Cho hình nón có thiết diện qua trục là tam giác vuông có cạnh huyền bằng a√2. Tính diện tích xung quanh Sxq của hình nón đó

Cho hình nón có thiết diện qua trục là tam giác vuông có cạnh huyền bằng \( a\sqrt{2} \). Tính diện tích xung quanh Sxq của hình nón đó.

A. \( {{S}_{xq}}=\frac{\pi {{a}^{2}}\sqrt{3}}{3} \)

B.  \( {{S}_{xq}}=\frac{\pi {{a}^{2}}\sqrt{2}}{2} \)      

C.  \( {{S}_{xq}}=\frac{\pi {{a}^{2}}\sqrt{2}}{6} \)

D.  \( {{S}_{xq}}=\frac{\pi {{a}^{2}}\sqrt{2}}{3} \)

Hướng dẫn giải:

Đáp án B.

Gọi S là đỉnh hình nón, thiết diện qua trục là tam giác SAB.

Ta có:  \( AB=a\sqrt{2}\Rightarrow SA=a  \)

 \( \Rightarrow \ell =SA=a  \);  \( r=\frac{AB}{2}=\frac{a\sqrt{2}}{2} \)

Vậy  \( {{S}_{xq}}=\pi r\ell =\pi .\frac{a\sqrt{2}}{2}.a=\frac{\pi {{a}^{2}}\sqrt{2}}{2} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *