Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính diện tích toàn phần của vật tròn xoay thu được khi quay tam giác AA’C quanh trục AA’

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính diện tích toàn phần của vật tròn xoay thu được khi quay tam giác AA’C quanh trục AA’.

A. \( \pi \left( \sqrt{3}+2 \right){{a}^{2}} \)

B.  \( 2\pi \left( \sqrt{2}+1 \right){{a}^{2}} \)          

C.  \( 2\pi \left( \sqrt{6}+1 \right){{a}^{2}} \)       

D.  \( \pi \left( \sqrt{6}+2 \right){{a}^{2}} \)

Hướng dẫn giải:

Đáp án D.

Quay tam giác AA’C một vòng quanh trục AA’ tạo thành hình nón có chiều cao AA’ = a, bán kính đáy  \( r=AC=a\sqrt{2} \), đường sinh  \( \ell =A’C=\sqrt{A{{{{A}’}}^{2}}+A{{C}^{2}}}=a\sqrt{3} \).

Diện tích toàn phần của hình nón:  \( S=\pi r\left( r+\ell  \right)=\pi a\sqrt{2}\left( a\sqrt{2}+a\sqrt{3} \right)=\pi \left( \sqrt{6}+2 \right){{a}^{2}} \)

 

Các bài toán liên quan

Bài toán mới!

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *