Cho hình lăng trụ tam giác đều ABC.A’B’C’ có độ dài cạnh đáy bằng a và chiều cao bằng h. Tính thể tích V của khối trụ ngoại tiếp lăng trụ đã cho

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có độ dài cạnh đáy bằng a và chiều cao bằng h. Tính thể tích V của khối trụ ngoại tiếp lăng trụ đã cho.

A. \( V=3\pi {{a}^{2}}h \).

B.  \( V=\pi {{a}^{2}}h \). 

C.  \( V=\frac{\pi {{a}^{2}}h}{9} \).                                

D.  \( V=\frac{\pi {{a}^{2}}h}{3} \).

 

Hướng dẫn giải:

Chọn D

Gọi G là trọng tâm của tam giác ABC. Do ABC là tam giác đều nên G là tâm đường tròn ngoại tiếp tam giác ABC.

Ta có  \( AG=\frac{2}{3}AM=\frac{2}{3}.\frac{a\sqrt{3}}{2}=\frac{a\sqrt{3}}{3} \).

Vậy thể tích của khối trụ cần tìm là  \( V=\pi {{R}^{2}}h=\pi .{{\left( \frac{a\sqrt{3}}{3} \right)}^{2}}h=\frac{\pi {{a}^{2}}h}{3} \) (đvtt).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *