Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, AB=a√3, BC = 2a, đường thẳng AC’ tạo với mặt phẳng (BCC’B’) một góc 30O (tham khảo hình vẽ bên dưới). Tính diện tích S của mặt cầu ngoại tiếp hình lăng trụ đã cho

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, \( AB=a\sqrt{3} \), BC = 2a, đường thẳng AC’ tạo với mặt phẳng (BCC’B’) một góc 30O (tham khảo hình vẽ bên dưới). Tính diện tích S của mặt cầu ngoại tiếp hình lăng trụ đã cho?

A. \( S=24\pi {{a}^{2}} \)

B.  \( S=6\pi {{a}^{2}} \)   

C.  \( S=4\pi {{a}^{2}} \)       

D.  \( S=3\pi {{a}^{2}} \)

Hướng dẫn giải:

Đáp án B.

Kẻ AH  \( \bot  \) BC (H  \( \in  \) BC) thì AH  \( \bot  \) (BCC’B’) (vì (ABC) và (BCC’B’) vuông góc với nhau theo giao tuyến BC).

Suy ra  \( \widehat{AC’H}={{30}^{O}} \)

 \( \Delta ABC  \) vuông tại A có đường cao AH nên  \( AC=\sqrt{B{{C}^{2}}-A{{B}^{2}}}=a  \) và  \( AH=\frac{AB.AC}{BC}=\frac{a\sqrt{3}}{2} \).

 \( \Delta AHC’ \) vuông tại H  \( \Rightarrow AC’=\frac{AH}{\sin {{30}^{O}}}=a\sqrt{3} \). Suy ra  \( AA’=\sqrt{A{{{{C}’}}^{2}}-A{{B}^{2}}}=a\sqrt{2} \).

Ta có thể xem hình lăng trụ đã cho là một phần của hình hộp chữ nhật có các kích thước lần lượt là  \( AB=a\sqrt{3} \), AC = a và  \( A’A=a\sqrt{2} \).

Do đó, bán kính mặt cầu ngoại tiếp hình lăng trụ là  \( R=\frac{1}{2}\sqrt{{{\left( a\sqrt{3} \right)}^{2}}+{{a}^{2}}+{{\left( a\sqrt{2} \right)}^{2}}}=\frac{a\sqrt{6}}{2} \).

Diện tích mặt cầu cần tìm là:  \( S=4\pi {{R}^{2}}=6\pi {{a}^{2}} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *