Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, AD = 2a, AA’ = 3a. Thể tích khối cầu ngoại tiếp hình hộp chữ nhật ABCD.A’B’C’D’ là
A. \( \frac{28\sqrt{14}\pi {{a}^{3}}}{3} \)
B. \( \sqrt{6}\pi {{a}^{3}} \)
C. \( \frac{7\sqrt{14}\pi {{a}^{3}}}{3} \)
D. \( 4\sqrt{6}\pi {{a}^{3}} \)
Hướng dẫn giải:
Đáp án C.
Gọi O là tâm của hình hộp ABCD.A’B’C’D’.
Tứ giác ABC’D’ là hình chữ nhật có tâm O nên OA = OB = OC’ = OD’ (1).
Tương tự ta có các tứ giác CDB’A’, BDD’B’ là các hình chữ nhật tâm O nên OC = OD = OA’ = OB’, OB = OD = OB’ = OD’ (2)
Từ (1) và (2) ta có điểm O cách đều các đỉnh của hình hộp nên O là tâm mặt cầu ngoại tiếp hình hộp.
Bán kính mặt cầu là: \(R=OA=\frac{AC’}{2}=\frac{\sqrt{A{{{{A}’}}^{2}}+{A}'{{{{C}’}}^{2}}}}{2}\) \(=\frac{\sqrt{A{{{{A}’}}^{2}}+{A}'{{{{B}’}}^{2}}+{A}'{{{{D}’}}^{2}}}}{2}=\frac{\sqrt{9{{a}^{2}}+{{a}^{2}}+4{{a}^{2}}}}{2}=\frac{a\sqrt{14}}{2}\)
Thể tích khối cầu là: \( V=\frac{4}{3}\pi {{\left( \frac{a\sqrt{14}}{2} \right)}^{3}}=\frac{7\sqrt{14}\pi {{a}^{3}}}{3} \)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!