Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy, SD tạo mặt phẳng (SAB) một góc bằng 30O

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy, SD tạo mặt phẳng (SAB) một góc bằng 30O. Tính thể tích V của khối chóp S.ABCD.

A. \(V=\sqrt{3}{{a}^{3}}\)

B. \(V=\frac{\sqrt{3}{{a}^{3}}}{3}\)

C. \(V=\frac{\sqrt{6}{{a}^{3}}}{18}\)                       

D. \(V=\frac{\sqrt{6}{{a}^{3}}}{3}\)

Hướng dẫn giải:

Đáp án B.

Ta có hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy nên DA  \( \bot  \) AB và DA \( \bot \) SA. Suy ra DA \( \bot \) (SAB).

Vậy góc giữa SD và mặt phẳng (SAB) là  \( \widehat{DSA}={{30}^{0}} \).

Ta có:  \( SA=AD.\cot {{30}^{0}}=a\sqrt{3} \)

 \( V=\frac{1}{3}.SA.{{S}_{ABCD}}=\frac{1}{3}.a\sqrt{3}.{{a}^{2}}=\frac{\sqrt{3}}{3}{{a}^{3}} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *