Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB = a, BC=a√3. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC)

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB = a, \( BC=a\sqrt{3} \). Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính a thể tích của khối chóp S.ABC.

A. \( V=\frac{{{a}^{3}}\sqrt{6}}{6} \)

B.  \( V=\frac{{{a}^{3}}\sqrt{6}}{12} \)                         

C.  \( V=\frac{2{{a}^{3}}\sqrt{6}}{3} \)                         

D.  \( V=\frac{{{a}^{3}}\sqrt{6}}{4} \)

Hướng dẫn giải:

Đáp án B.

Gọi H là trung điểm của cạnh AB.

Do  \( \Delta SAB  \) đều nên  \( SH\bot AB  \)

 \( \left. \begin{align} & (SAB)\bot (ABC) \\  & (SAB)\cap (ABC)=AB \\  & SH\subset (SAB),SH\bot AB \\ \end{align} \right\}\Rightarrow SH\bot (ABC) \)

Vậy SH là chiều cao của khối chóp S.ABC.

 \( \Delta ABC  \) vuông tại A, ta có:  \( AC=\sqrt{B{{C}^{2}}-A{{B}^{2}}}=\sqrt{{{\left( a\sqrt{3} \right)}^{2}}-{{a}^{2}}}=a\sqrt{2} \)

 \( {{S}_{\Delta ABC}}=\frac{1}{2}AB.AC=\frac{1}{2}.a.a\sqrt{2}=\frac{{{a}^{2}}\sqrt{2}}{2} \),  \( SH=\frac{a\sqrt{3}}{2} \).

Thể tích khối chóp S.ABC là:  \( {{V}_{S.ABC}}=\frac{1}{3}{{S}_{ABC}}.SH=\frac{1}{3}.\frac{{{a}^{2}}\sqrt{2}}{2}.\frac{a\sqrt{3}}{2}=\frac{{{a}^{3}}\sqrt{6}}{12} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *