Cho hàm số y=x^4+2mx^2+m (với m là tham số thực). Tập tất cả các giá trị của tham số m để đồ thị hàm số đã cho cắt đường thẳng y=−3 tại bốn điểm phân biệt, trong đó có một điểm có hoành độ lớn hơn 2 còn ba điểm kia có hoành độ nhỏ hơn 1

Cho hàm số  \( y={{x}^{4}}+2m{{x}^{2}}+m  \) (với m là tham số thực). Tập tất cả các giá trị của tham số m để đồ thị hàm số đã cho cắt đường thẳng  \( y=-3 \) tại bốn điểm phân biệt, trong đó có một điểm có hoành độ lớn hơn 2 còn ba điểm kia có hoành độ nhỏ hơn 1, là khoảng (a;b) (với  \( a,b\in \mathbb{Q} \); a, b là phân số tối giản). Khi đó, 15ab nhận giá trị nào sau đây?

A. \( -63 \)

B. 63             

C. 95                  

D.  \( -95 \)

Hướng dẫn giải:

Đáp án C.

Xét phương trình hoành độ giao điểm  \( {{x}^{4}}+2m{{x}^{2}}+m=-3 \). Đặt  \( {{x}^{2}}=t,t\ge 0 \).

Khi đó phương trình trở thành  \( {{t}^{2}}+2mt+m+3=0 \) (1) và đặt  \( f(t)={{t}^{2}}+2mt+m+3 \).

Để đồ thị hàm số cắt đường thẳng  \( y=-3 \) tại 4 điểm phân biệt thì phương trình (1) có hai nghiệm thỏa mãn  \( 0<{{t}_{1}}<{{t}_{2}} \) và khi đó hoành độ bốn giao điểm là  \( -\sqrt{{{t}_{2}}}<-\sqrt{{{t}_{1}}}<\sqrt{{{t}_{1}}}<\sqrt{{{t}_{2}}} \).

Do đó, từ điều kiện của bài toán suy ra  \( \left\{ \begin{align}  & \sqrt{{{t}_{1}}}<1 \\  &\sqrt{{{t}_{2}}}>2 \\ \end{align} \right. \) hay  \( 0<{{t}_{1}}<1<4<{{t}_{2}} \).

Điều này xảy ra khi và chỉ khi  \( \left\{ \begin{align}  & f(0)>0 \\  & f(1)<0 \\  & f(4)<0 \\\end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m+3>0 \\  & 3m+4<0 \\  & 9m+19<0 \\ \end{align} \right.\Leftrightarrow -3<m<-\frac{19}{9} \)

Vậy  \( \left\{ \begin{align}  & a=-3 \\  & b=-\frac{19}{9} \\ \end{align} \right. \) nên  \( 15ab=95 \).

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *