Cho hàm số y=x^4−(3m+2)x^2+3m có đồ thị là (Cm). Tìm m để đường thẳng d:y=−1 cắt đồ thị (Cm) tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2

Cho hàm số \( y={{x}^{4}}-\left( 3m+2 \right){{x}^{2}}+3m  \) có đồ thị là (Cm). Tìm m để đường thẳng  \( d:y=-1 \) cắt đồ thị (Cm) tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2.

A. \( -\frac{1}{3}<m<1 \) và \( m\ne 0 \)                

B.  \( -\frac{1}{2}<m<1 \) và m\ne 0           

C.  \( -\frac{1}{2}<m<\frac{1}{2} \) và  \( m\ne 0 \)                           

D.  \( -\frac{1}{3}<m<\frac{1}{2} \) và  \( m\ne 0 \)

Hướng dẫn giải:

Đáp án A.

Phương trình hoành độ giao điểm của (Cm) và đường thẳng d là  \( {{x}^{4}}-\left( 3m+2 \right){{x}^{2}}+3m=-1 \)

 \( \Leftrightarrow {{x}^{4}}-\left( 3m+2 \right){{x}^{2}}+3m+1=0 \)

Đặt  \( t={{x}^{2}},\text{ }t\ge 0 \).

Phương trình trở thành:  \( {{t}^{2}}-\left( 3m+2 \right)t+3m+1=0 \)  (2)

 \( \Leftrightarrow \left[ \begin{align}  & t=1 \\  & t=3m+1 \\ \end{align} \right. \)

Đường thẳng  \( d:y=-1 \) cắt đồ thị (Cm) tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2 khi và chỉ khi phương trình (2) có hai nghiệm dương phân biệt t1, t2 thỏa mãn  \( 0<{{t}_{1}}<{{t}_{2}}<4 \)

 \( \Leftrightarrow \left\{ \begin{align}  & 3m+1\ne 1 \\  & 0<3m+1<4 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m\ne 0 \\  & -\frac{1}{3}<m<1 \\ \end{align} \right. \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *