Cho hàm số y=(m−1)x−1√+2x−1√+m. Tìm tập tất cả các giá trị của tham số m để hàm số đồng biến trên khoảng (17;37)

Cho hàm số \(y=\frac{\left( m-1 \right)\sqrt{x-1}+2}{\sqrt{x-1}+m}\). Tìm tập tất cả các giá trị của tham số m để hàm số đồng biến trên khoảng (17;37).

A. \(m\in \left[ -4;-1 \right)\)

B. \(m\in \left( -\infty ;-6 \right]\cup \left[ -4;-1 \right)\cup \left( 2;+\infty \right)\)

C.\(m\in \left( -\infty ;-4 \right]\cup \left( 2;+\infty  \right)\)                                        

D.\(m\in \left( -1;2 \right)\)

Hướng dẫn giải:

 Đáp án B.

Đặt \( t=\sqrt{x-1}\overset{x\in (17;37)}{\rightarrow}t\in (4;6) \). Do  \( t=\sqrt{x-1} \) đồng biến trên khoảng (17;37).

Nên bài toán phát biểu lại là: “Tìm tập tất cả các giá trị của m để hàm số \( y=\frac{(m-1)t+2}{t+2} \) đồng biến trên khoảng (4;6)”.

Khi đó, yêu cầu bài toán \(\Leftrightarrow {y}’=\frac{{{m}^{2}}-m-2}{{{(t+m)}^{2}}}>0,\forall t\in (4;6)\)

\( \Leftrightarrow \left\{ \begin{align}& t=-m\notin (4;6) \\& {{m}^{2}}-m-2>0 \\\end{align} \right. \)\(\Leftrightarrow \left\{\begin{matrix} \left [ \begin{matrix} -m\le 4 \\ -m\ge 6 \end{matrix} \right. \\ \left [ \begin{matrix} m<-1 \\ m>2 \end{matrix}\right. \end{matrix}\right. \)\(\Leftrightarrow \left\{\begin{matrix} \left [ \begin{matrix} m\ge -4 \\ m\le -6 \end{matrix} \right. \\ \left [ \begin{matrix} m<-1 \\ m>2 \end{matrix}\right. \end{matrix}\right. \) \( \Leftrightarrow m\in \left( -\infty ;-6 \right]\cup \left[ -4;-1 \right)\cup \left( 2;+\infty  \right) \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *