Cho hàm số y = f(x). Đồ thị hàm số y=f′(x) như hình vẽ. Đặt h(x)=2f(x)−x^2. Mệnh đề nào dưới đây đúng?

(THPTQG – 2017 – 123) Cho hàm số y = f(x). Đồ thị hàm số \( y={f}'(x) \) như hình vẽ. Đặt  \( h(x)=2f(x)-{{x}^{2}} \). Mệnh đề nào dưới đây đúng?

A. h(4) = h(-2) < h(2)

B. h(2) > h(-2) > h(4)

C. h(4) = h(-2) > h(2)   

D. h(2) > h(4) > h(-2)

Hướng dẫn giải:

Đáp án D.

Ta có:  \( {h}'(x)=2\left[ {f}'(x)-x \right];{h}'(x)=0\Rightarrow x\in \{-2;2;4\} \)

Bảng biến thiên:

Suy ra  \( h(2)>h(4) \).

Kết hợp với đồ thị hàm số y = x ta có:

 \( \int\limits_{-2}^{4}{{h}'(x)dx}>0\Leftrightarrow h(4)-h(-2)>0\Leftrightarrow h(4)>h(-2) \)

Vậy ta có:  \( h(2)>h(4)>h(-2) \)

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *