(THPTQG – 2020 – 101 – Lần 1) Cho hàm số \( f(x)=\frac{x}{\sqrt{{{x}^{2}}+2}} \). Họ tất cả các nguyên hàm của hàm số \( g(x)=(x+1).{f}'(x) \) là:
A. \( \frac{{{x}^{2}}+2x-2}{2\sqrt{{{x}^{2}}+2}}+C \)
B. \( \frac{x-2}{\sqrt{{{x}^{2}}+2}}+C \)
C. \( \frac{{{x}^{2}}+2x+2}{2\sqrt{{{x}^{2}}+2}}+C \)
D. \( \frac{x+2}{\sqrt{{{x}^{2}}+2}}+C \)
Hướng dẫn giải:
Đáp án B.
Tính \( g(x)=\int{\left( x+1 \right){f}'(x)dx}=(x+1)f(x)-\int{(x+1{)}’f(x)dx} \)
\( =\frac{{{x}^{2}}+x}{\sqrt{{{x}^{2}}+2}}-\int{f(x)dx}=\frac{{{x}^{2}}+x}{\sqrt{{{x}^{2}}+2}}-\int{\frac{x}{\sqrt{{{x}^{2}}+2}}dx} \)
\( =\frac{{{x}^{2}}+x}{\sqrt{{{x}^{2}}+2}}-\sqrt{{{x}^{2}}+2}+C=\frac{x-2}{\sqrt{{{x}^{2}}+2}}+C \)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!