Cho hàm số \( f(x)=\cos 2x \). Bất phương trình \( {{f}^{\left( 2019 \right)}}(x)>m \) đúng với mọi \( x\in \left( \frac{\pi }{12};\frac{3\pi }{8} \right) \) khi và chỉ khi
A. \( m<{{2}^{2018}} \)
B. \( m\le {{2}^{2018}} \)
C. \( m\le {{2}^{2019}} \)
D. \( m<{{2}^{2019}} \)
Hướng dẫn giải:
Đáp án B.
Từ giả thiết, ta chỉ xét \( m\in {{\mathbb{Z}}^{+}} \)
Ta có: \( {{9}^{{{m}^{2}}x}}+{{4}^{{{m}^{2}}x}}\ge m{{.5}^{{{m}^{2}}x}}\)\(\Leftrightarrow {{\left( \frac{9}{5} \right)}^{{{m}^{2}}x}}+{{\left( \frac{4}{5} \right)}^{{{m}^{2}}x}}\ge m \) (1)
Có \(\Leftrightarrow {{\left( \frac{9}{5} \right)}^{{{m}^{2}}x}}+{{\left( \frac{4}{5} \right)}^{{{m}^{2}}x}}\ge 2\sqrt{{{\left( \frac{9}{5} \right)}^{{{m}^{2}}x}}.{{\left( \frac{4}{5} \right)}^{{{m}^{2}}x}}}=2{{\left( \frac{6}{5} \right)}^{{{m}^{2}}x}}\)
Do đó, nếu có xO là nghiệm của bất phương trình \(2{{\left( \frac{6}{5} \right)}^{{{m}^{2}}x}}\ge m\) thì xO cũng là nghiệm của \( {{\left( \frac{9}{5} \right)}^{{{m}^{2}}x}}+{{\left( \frac{4}{5} \right)}^{{{m}^{2}}x}}\ge m \).
Ta xét các giá trị \(m\in {{\mathbb{Z}}^{+}}\) làm cho bất phương trình \(2{{\left( \frac{6}{5} \right)}^{{{m}^{2}}x}}\ge m\) (2) có nghiệm.
Vì \(2{{\left( \frac{6}{5} \right)}^{{{m}^{2}}x}}\ge m\Leftrightarrow {{\left( \frac{6}{5} \right)}^{{{m}^{2}}x}}\ge \frac{m}{2},m\in {{\mathbb{Z}}^{+}}\)
\(\Leftrightarrow {{m}^{2}}x\ge {{\log }_{\frac{6}{5}}}\left( \frac{m}{2} \right)\Leftrightarrow x\ge \frac{1}{{{m}^{2}}}{{\log }_{\frac{6}{5}}}\left( \frac{m}{2} \right),m\in {{\mathbb{Z}}^{+}}\)
Vậy với \(m\in {{\mathbb{Z}}^{+}}\) thì bất phương trình (2) có nghiệm tương ứng là \(x\ge \frac{1}{{{m}^{2}}}{{\log }_{\frac{6}{5}}}\left( \frac{m}{2} \right)\)
Suy ra có vô số giá trị \(m\in {{\mathbb{Z}}^{+}}\) làm cho bất phương trình (1) có nghiệm.
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!