Cho hàm số f(x)=cos2x. Bất phương trình f^(2019)(x) m đúng với mọi x∈(π/12;3π/8) khi và chỉ khi

Cho hàm số  \( f(x)=\cos 2x  \). Bất phương trình  \( {{f}^{\left( 2019 \right)}}(x)>m  \) đúng với mọi  \( x\in \left( \frac{\pi }{12};\frac{3\pi }{8} \right) \) khi và chỉ khi

A. \( m<{{2}^{2018}} \)

B.  \( m\le {{2}^{2018}} \)

C.  \( m\le {{2}^{2019}} \)     

D.  \( m<{{2}^{2019}} \)

Hướng dẫn giải:

Đáp án B.

Từ giả thiết, ta chỉ xét  \( m\in {{\mathbb{Z}}^{+}} \)

Ta có:  \( {{9}^{{{m}^{2}}x}}+{{4}^{{{m}^{2}}x}}\ge m{{.5}^{{{m}^{2}}x}}\)\(\Leftrightarrow {{\left( \frac{9}{5} \right)}^{{{m}^{2}}x}}+{{\left( \frac{4}{5} \right)}^{{{m}^{2}}x}}\ge m  \) (1)

Có \(\Leftrightarrow {{\left( \frac{9}{5} \right)}^{{{m}^{2}}x}}+{{\left( \frac{4}{5} \right)}^{{{m}^{2}}x}}\ge 2\sqrt{{{\left( \frac{9}{5} \right)}^{{{m}^{2}}x}}.{{\left( \frac{4}{5} \right)}^{{{m}^{2}}x}}}=2{{\left( \frac{6}{5} \right)}^{{{m}^{2}}x}}\)

Do đó, nếu có xO là nghiệm của bất phương trình \(2{{\left( \frac{6}{5} \right)}^{{{m}^{2}}x}}\ge m\) thì xO cũng là nghiệm của  \( {{\left( \frac{9}{5} \right)}^{{{m}^{2}}x}}+{{\left( \frac{4}{5} \right)}^{{{m}^{2}}x}}\ge m  \).

Ta xét các giá trị \(m\in {{\mathbb{Z}}^{+}}\) làm cho bất phương trình \(2{{\left( \frac{6}{5} \right)}^{{{m}^{2}}x}}\ge m\) (2) có nghiệm.

Vì \(2{{\left( \frac{6}{5} \right)}^{{{m}^{2}}x}}\ge m\Leftrightarrow {{\left( \frac{6}{5} \right)}^{{{m}^{2}}x}}\ge \frac{m}{2},m\in {{\mathbb{Z}}^{+}}\)

\(\Leftrightarrow {{m}^{2}}x\ge {{\log }_{\frac{6}{5}}}\left( \frac{m}{2} \right)\Leftrightarrow x\ge \frac{1}{{{m}^{2}}}{{\log }_{\frac{6}{5}}}\left( \frac{m}{2} \right),m\in {{\mathbb{Z}}^{+}}\)

Vậy với \(m\in {{\mathbb{Z}}^{+}}\) thì bất phương trình (2) có nghiệm tương ứng là \(x\ge \frac{1}{{{m}^{2}}}{{\log }_{\frac{6}{5}}}\left( \frac{m}{2} \right)\)

Suy ra có vô số giá trị \(m\in {{\mathbb{Z}}^{+}}\) làm cho bất phương trình (1) có nghiệm.

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *