Cho hàm số f(x) xác định trên \( \left[ 0;\frac{\pi }{2} \right] \) thỏa mãn \( \int\limits_{0}^{\frac{\pi }{2}}{\left[ {{f}^{2}}(x)-2\sqrt{2}f(x)\sin \left( x-\frac{\pi }{4} \right) \right]dx}=\frac{2-\pi }{2} \). Tích phân \( \int\limits_{0}^{\frac{\pi }{2}}{f(x)dx} \) bằng
A. \( \frac{\pi }{4} \)
B. 0
C. 1
D. \( \frac{\pi }{2} \)
Hướng dẫn giải:
Đáp án B.
Ta có: \( \int\limits_{0}^{\frac{\pi }{2}}{\left[ {{f}^{2}}(x)-2\sqrt{2}f(x)\sin \left( x-\frac{\pi }{4} \right) \right]dx}=\frac{2-\pi }{2} \)
\( \Leftrightarrow \int\limits_{0}^{\frac{\pi }{2}}{\left[ {{\left( f(x)-\sqrt{2}\sin \left( x-\frac{\pi }{4} \right) \right)}^{2}}-2{{\sin }^{2}}\left( x-\frac{\pi }{4} \right) \right]dx}=\frac{2-\pi }{2} \)
\( \Leftrightarrow \int\limits_{0}^{\frac{\pi }{2}}{{{\left( f(x)-\sqrt{2}\sin \left( x-\frac{\pi }{4} \right) \right)}^{2}}dx}-2\int\limits_{0}^{\frac{\pi }{2}}{{{\sin }^{2}}\left( x-\frac{\pi }{4} \right)dx}=\frac{2-\pi }{2} \)
Xét \( 2\int\limits_{0}^{\frac{\pi }{2}}{{{\sin }^{2}}\left( x-\frac{\pi }{4} \right)dx}=\int\limits_{0}^{\frac{\pi }{2}}{\left[ 1-\cos \left( 2x-\frac{\pi }{2} \right) \right]dx}=\int\limits_{0}^{\frac{\pi }{2}}{(1-\sin 2x)dx} \)
\( =\left. \left( x+\frac{1}{2}\cos 2x \right) \right|_{0}^{\frac{\pi }{2}}=\frac{\pi -2}{2} \).
Do đó: \( \Leftrightarrow \int\limits_{0}^{\frac{\pi }{2}}{{{\left[ f(x)-\sqrt{2}\sin \left( x-\frac{\pi }{4} \right) \right]}^{2}}dx-2\int\limits_{0}^{\frac{\pi }{2}}{{{\sin }^{2}}\left( x-\frac{\pi }{4} \right)dx}}=\frac{2-\pi }{2} \)
\( \Leftrightarrow \int\limits_{0}^{\frac{\pi }{2}}{{{\left[ f(x)-\sqrt{2}\sin \left( x-\frac{\pi }{4} \right) \right]}^{2}}dx}-\frac{\pi -2}{2}=\frac{2-\pi }{2}\Leftrightarrow \int\limits_{0}^{\frac{\pi }{2}}{{{\left[ f(x)-\sqrt{2}\sin \left( x-\frac{\pi }{4} \right) \right]}^{2}}dx}=0 \)
Suy ra: \( f(x)-\sqrt{2}\sin \left( x-\frac{\pi }{4} \right)=0\Leftrightarrow f(x)=\sqrt{2}\sin \left( x-\frac{\pi }{4} \right) \) .
Vậy: \( \int\limits_{0}^{\frac{\pi }{2}}{f(x)dx}=\int\limits_{0}^{\frac{\pi }{2}}{\sqrt{2}\sin \left( x-\frac{\pi }{4} \right)dx}=\left. -\sqrt{2}\cos \left( x-\frac{\pi }{4} \right) \right|_{0}^{\frac{\pi }{2}}=0 \).
Các bài toán liên quan
Các bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Hệ Thống Trung Tâm Nhân Tài Việt!
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh các lớp 10, 11, 12, LTDH
- Cơ sở 1: Khu đô thị Garden, Thị trấn Đức Tài, Huyện Đức Linh, Tỉnh Bình Thuận
- Cơ sở 2: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Cơ sở 3: số 33/66, hẻm 33, đường số 5, P. Bình Hưng Hòa, Quận Tân Bình, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!