Cho hàm số f(x) có đạo hàm f′(x)=(x+1)(x−1)^2(x−2). Giá trị nhỏ nhất của hàm số

Cho hàm số f(x) có đạo hàm \( {f}'(x)=(x+1){{(x-1)}^{2}}(x-2) \). Giá trị nhỏ nhất của hàm số  \( g(x)=f(x)+\frac{1}{3}{{x}^{3}}-x-2 \) có đạo hàm trên đoạn  \( [-1;2] \) bằng

A. \( f(2)-\frac{3}{4} \).

B.  \( f(1)-\frac{8}{3} \).  

C.  \( f(0)-2 \).                  

D.  \( f(-1)-\frac{4}{3} \).

Hướng dẫn giải:

Chọn B

Ta có:  \( {g}'(x)={f}'(x)+{{x}^{2}}-1=(x+1){{(x-1)}^{2}}(x-2)+{{x}^{2}}-1=(x+1)(x-1)({{x}^{2}}-3x+3) \).

\({g}'(x)=0\Leftrightarrow (x+1)(x-1)({{x}^{2}}-3x+3)=0\Leftrightarrow \left[ \begin{align}  & x=-1 \\  & x=1 \\  & {{x}^{2}}-3x+3=0 \\ \end{align} \right.\)\(\Leftrightarrow \left[ \begin{align}  & x=-1 \\  & x=1 \\ \end{align} \right.\).

Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy hàm số đạt giá trị nhỏ nhất tại  \( x=1 \) suy ra giá trị nhỏ nhất của hàm số  \( g(x) \) là  \( g(1)=f(1)-\frac{8}{3} \).

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *