Cho hai số phức \( {{z}_{1}},{{z}_{2}} \) thỏa mãn \( \left| \frac{{{z}_{1}}-i}{{{z}_{1}}+2-3i} \right|=1;\text{ }\left| \frac{{{z}_{2}}+i}{{{z}_{2}}-1+i} \right|=\sqrt{2} \). Giá trị nhỏ nhất của \( \left| {{z}_{1}}-{{z}_{2}} \right| \) là

Cho hai số phức \( {{z}_{1}},{{z}_{2}} \) thỏa mãn  \( \left| \frac{{{z}_{1}}-i}{{{z}_{1}}+2-3i} \right|=1;\text{ }\left| \frac{{{z}_{2}}+i}{{{z}_{2}}-1+i} \right|=\sqrt{2} \). Giá trị nhỏ nhất của  \( \left| {{z}_{1}}-{{z}_{2}} \right| \) là:

A. \( 2\sqrt{2} \)                                           

B.  \( \sqrt{2} \)

C. 1                  

D.  \( \sqrt{2}-1 \).

Hướng dẫn giải:

Đáp án A.

Giả sử \({{z}_{1}}={{x}_{1}}+{{y}_{1}}i\) với \({{x}_{1}},{{y}_{1}}\in \mathbb{R}\).

Khi đó:  \( \left| \frac{{{z}_{1}}-i}{{{z}_{1}}+2-3i} \right|=1\Leftrightarrow \left| {{z}_{1}}-i \right|=\left| {{z}_{1}}+2-3i \right|\Leftrightarrow \left| {{x}_{1}}+({{y}_{1}}-1)i \right|=\left| ({{x}_{1}}+2)+({{y}_{1}}-3)i \right| \)

\(\Leftrightarrow \sqrt{x_{1}^{2}+{{({{y}_{1}}-1)}^{2}}}=\sqrt{{{({{x}_{1}}+2)}^{2}}+{{({{y}_{1}}-3)}^{2}}}\Leftrightarrow {{x}_{1}}-{{y}_{1}}+3=0\)

 \( \Rightarrow  \) Quỹ tích điểm M biểu diễn số phức z1 là đường thẳng  \( \Delta :x-y+3=0 \).

Giả sử  \( {{z}_{2}}={{x}_{2}}+{{y}_{2}}i  \), với  \( {{x}_{2}},{{y}_{2}}\in \mathbb{R} \).

Ta có:  \( \left| \frac{{{z}_{2}}+i}{{{z}_{2}}-1+i} \right|=\sqrt{2}\Leftrightarrow \left| {{z}_{2}}+i \right|=\sqrt{2}\left| {{z}_{2}}-1+i \right|\Leftrightarrow \left| {{x}_{2}}+({{y}_{2}}+1)i \right|=\sqrt{2}\left| ({{x}_{2}}-1)+({{y}_{2}}+1)i \right| \)

\(\Leftrightarrow \sqrt{x_{2}^{2}+{{({{y}_{2}}+1)}^{2}}}=\sqrt{2}\sqrt{{{({{x}_{2}}-1)}^{2}}+{{({{y}_{2}}+1)}^{2}}}\Leftrightarrow x_{2}^{2}+y_{2}^{2}-4{{x}_{2}}+2{{y}_{2}}+3=0\)

 \( \Rightarrow  \) Quỹ tích điểm N biểu diễn số phức  \( {{z}_{2}} \) là đường tròn  \( (C):{{x}^{2}}+{{y}^{2}}-4x+2y+3=0 \) có tâm I(2;-1) và bán kính  \( R=\sqrt{{{2}^{2}}+{{(-1)}^{2}}-3}=\sqrt{2} \).

Khoảng cách từ I đến  \( \Delta  \) là:  \( {{d}_{\left( I,\Delta  \right)}}=\frac{\left| 2-(-1)+3 \right|}{\sqrt{{{1}^{2}}+{{(-1)}^{2}}}}=3\sqrt{2}>R  \)

 \( \Rightarrow \) Đường thẳng  \( \Delta  \) và đường tròn (C) không có điểm chung.

Quỹ tích các điểm biểu diễn số phức  \( {{z}_{1}}-{{z}_{2}} \) là đoạn thẳng MN.

 \( \Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}_{\min }}\Leftrightarrow M{{N}_{\min }} \)

Dễ thấy  \( M{{N}_{\min }}=3\sqrt{2}-\sqrt{2}=2\sqrt{2} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *