Cho hai số phức z và w=a+bi thỏa mãn ∣z+√5∣+∣z−√5∣=6; 5a−4b−20=0. Giá trị nhỏ nhất của |z−w| là

Cho hai số phức z và \(w=a+bi\) thỏa mãn \( \left| z+\sqrt{5} \right|+\left| z-\sqrt{5} \right|=6 \);  \( 5a-4b-20=0 \). Giá trị nhỏ nhất của  \( \left| z-w \right| \) là

A. \( \frac{3}{\sqrt{41}} \)    

B.  \( \frac{5}{\sqrt{41}} \)       

C.  \( \frac{4}{\sqrt{41}} \)                                        

D.  \( \frac{3}{41} \)

Hướng dẫn giải:

Chọn A.

Đặt  \( {{F}_{1}}\left( -\sqrt{5};0 \right),\text{ }{{F}_{2}}\left( \sqrt{5};0 \right) \), vì  \( \sqrt{5}<3 \) nên tập hợp các điểm M biễu diễn số phức z thuộc elip có  \( \left\{ \begin{align}  & a=3 \\  & c=\sqrt{5} \\ \end{align} \right.\Rightarrow {{b}^{2}}={{a}^{2}}-{{c}^{2}}=4 \) suy ra  \( (E):\frac{{{x}^{2}}}{9}+\frac{{{y}^{2}}}{4}=1 \).

Tập hợp các điểm N biểu diễn số phức w thuộc đường thẳng  \( \Delta :5x-4y-20=0 \).

Yêu cầu bài toán trở thành tìm điểm  \( M\in (E) \) và  \( N\in \Delta \)  sao cho MN nhỏ nhất.

Đường thẳng d song song với  \( \Delta \)  có dạng  \( d:5x-4y+c=0\text{ }(c\ne -20) \).

Đường thẳng d tiếp xúc với (E) khi và chỉ khi  \( {{c}^{2}}={{5}^{2}}.9+{{(-4)}^{2}}.4=289\Rightarrow \left[ \begin{align} & c=17 \\  & c=-17 \\ \end{align} \right. \).

+ Với  \( c=17\Rightarrow d(d,\Delta )=\frac{\left| -20-17 \right|}{\sqrt{{{5}^{2}}+{{(-4)}^{2}}}}=\frac{37}{\sqrt{41}} \).

+ Với  \( c=-17\Rightarrow d(d,\Delta )=\frac{\left| -20+17 \right|}{\sqrt{{{5}^{2}}+{{(-4)}^{2}}}}=\frac{3}{\sqrt{41}} \).

Vậy  \( M{{N}_{\min }}=\frac{3}{\sqrt{41}} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *