Cho hai hàm số y=a^x và y=logax với a>0; a≠1

Cho hai hàm số  \( y={{a}^{x}} \) và  \( y={{\log }_{a}}x \) với a > 0; a ≠ 1. Khẳng định nào sau đây sai?

A. Hàm số  \( y={{\log }_{a}}x \) có tập xác định  \( D=\left( 0;+\infty \right) \)

B. Đồ thị hàm số  \( y={{a}^{x}} \) nhận trục hoành làm đường tiệm cận ngang

C. Hàm số  \( y={{a}^{x}} \) và  \( y={{\log }_{a}}x \) đồng biến trên mỗi tập xác định tương ứng của nó khi a > 1.

D. Đồ thị hàm số  \( y={{\log }_{a}}x \) nằm phía trên trục hoành

Hướng dẫn giải:

Đáp án D

Hàm số  \( y={{\log }_{a}}x \) có tập xác định  \( D=\left( 0;+\infty  \right) \) và miền giá trị là  \( \mathbb{R} \) nên đồ thị hàm số  \( y={{\log }_{a}}x \) nằm bên phải trục tung Oy và nằm cả phía dưới trục hoành Ox. Do đó D sai.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *