(Đề Tham Khảo – 2018) Cho (H) là hình phẳng giới hạn bởi parabol \( y=\sqrt{3}{{x}^{2}} \), cung tròn có phương trình \( y=\sqrt{4-{{x}^{2}}} \) (với \( 0\le x\le 2 \)) và trục hoành (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
A. \( \frac{4\pi +\sqrt{3}}{12} \)
B. \( \frac{4\pi -\sqrt{3}}{6} \)
C. \( \frac{4\pi +2\sqrt{3}-3}{6} \)
D. \( \frac{5\sqrt{3}-2\pi }{3} \)
Hướng dẫn giải:
Đáp án B.
Phương trình hoành độ giao điểm giữa parabol và cung tròn ta được:
\(\sqrt{3}{{x}^{2}}=\sqrt{4-{{x}^{2}}}\Leftrightarrow x=\pm 1\) với \(0\le x\le 2\)
\( \Rightarrow x=1 \)
Ta có diện tích: \( S=\int\limits_{0}^{1}{\sqrt{3}{{x}^{2}}dx}+\int\limits_{1}^{2}{\sqrt{4-{{x}^{2}}}dx}=\left. \frac{\sqrt{3}}{3}{{x}^{3}} \right|_{0}^{1}+\int\limits_{1}^{2}{\sqrt{4-{{x}^{2}}}dx}=\frac{\sqrt{3}}{3}+\int\limits_{1}^{2}{\sqrt{4-{{x}^{2}}}dx} \)
Đặt: \( x=2\sin t\Rightarrow dx=2\cos tdt \)
Đổi cận: \( \left\{ \begin{align} & x=1\Rightarrow t=\frac{\pi }{6} \\ & x=2\Rightarrow t=\frac{\pi }{2} \\ \end{align} \right. \)
\( \Rightarrow S=\frac{\sqrt{3}}{3}+\left. 2\left( t+\frac{1}{2}\sin 2t \right) \right|_{\frac{\pi }{6}}^{\frac{\pi }{2}}=\frac{4\pi -\sqrt{3}}{6} \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!