Cho f(x)=cos^22x+2(sinx+cosx)^3−3sin2x+m

Cho \( f(x)={{\cos }^{2}}2x+2{{(\sin x+\cos x)}^{3}}-3\sin 2x+m \).

a) Giải phương trình \( f(x)=0 \) khi \( m=-3 \).

b) Tính theo m giá trị lớn nhất và giá trị nhỏ nhất của f(x). Tìm m sao cho \( {{[f(x)]}^{2}}\le 36,\text{ }\forall x\in \mathbb{R} \).

Hướng dẫn giải:

Đặt  \( t=\sin x+\cos x=\sqrt{2}\cos \left( x-\frac{\pi }{4} \right) \) (điều kiện  \( \left| t \right|\le \sqrt{2} \))

Thì  \( {{t}^{2}}=1+\sin 2x \) và  \( {{\cos }^{2}}2x=1-si{{n}^{2}}2x=1-{{({{t}^{2}}-1)}^{2}}=-{{t}^{4}}+2{{t}^{2}} \).

Vậy f(x) thành  \( g(t)=-{{t}^{4}}+2{{t}^{2}}+2{{t}^{3}}-3({{t}^{2}}-1)+m \).

a) Khi \( m=-3 \) thì \( g(t)=0 \)

 \( \Leftrightarrow -{{t}^{2}}({{t}^{2}}-2t+1)=0\Leftrightarrow \left[ \begin{align}  & t=0 \\  & t=1 \\ \end{align} \right. \) \( \Rightarrow \left[ \begin{align}  & \sqrt{2}\cos \left( x-\frac{\pi }{4} \right)=0 \\  & \sqrt{2}\cos \left( x-\frac{\pi }{4} \right)=1 \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & \cos \left( x-\frac{\pi }{4} \right)=0 \\  & \cos \left( x-\frac{\pi }{4} \right)=\frac{\sqrt{2}}{2}=\cos \frac{\pi }{4} \\ \end{align} \right. \)\(\Leftrightarrow \left[ \begin{align}  & x-\frac{\pi }{4}=\frac{\pi }{2}+k\pi  \\ & x-\frac{\pi }{4}=\frac{\pi }{4}+k2\pi \vee x-\frac{\pi }{4}=-\frac{\pi }{4}+k2\pi  \\ \end{align} \right.\)

\(\Leftrightarrow \left[ \begin{align}  & x=\frac{3\pi }{4}+k\pi  \\  & x=\frac{\pi }{2}+k2\pi \vee x=k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z}\).

b) Ta có: \( {g}'(t)=-4{{t}^{3}}+6{{t}^{2}}-2t=-2t(2{{t}^{2}}-3t+1) \)

Do đó:  \( \left\{ \begin{align}  & {g}'(t)=0 \\  & t\in \left[ -\sqrt{2};\sqrt{2} \right] \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & t=0 \\  & t=1 \\  & t=\frac{1}{2} \\ \end{align} \right. \).

Ta có:  \( g(0)=3+m=g(1),\text{ }g\left( \frac{1}{2} \right)=\frac{47}{16}+m \)

 \( g(-\sqrt{2})=4\sqrt{2}-3+m,\text{ }g(\sqrt{2})=m-3-4\sqrt{2} \).

Vậy:  \( \underset{x\in \mathbb{R}}{\mathop{max}}\,f(x)=\underset{t\in \left[ -\sqrt{2};\sqrt{2} \right]}{\mathop{max}}\,g(t)=m+3 \).

 \( \underset{x\in \mathbb{R}}{\mathop{\min }}\,f(x)=\underset{t\in \left[ -\sqrt{2};\sqrt{2} \right]}{\mathop{\min }}\,g(t)=m-3-4\sqrt{2} \).

Do đó:  \( {{[f(x)]}^{2}}\le 36,\text{ }\forall x\in \mathbb{R}\Leftrightarrow -6\le f(x)\le 6,\forall x\in \mathbb{R} \)

 \( \Leftrightarrow \left\{ \begin{align}  & \underset{\mathbb{R}}{\mathop{max}}\,f(x)\le 6 \\  & \underset{\mathbb{R}}{\mathop{\min }}\,f(x)\ge -6 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m+3\le 6 \\  & m-3-4\sqrt{2}\ge -6 \\ \end{align} \right.\Leftrightarrow 4\sqrt{2}-3\le m\le 3 \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *