(THPTQG – 2017 – 104) Cho \( F(x)=\frac{1}{2{{x}^{2}}} \) là một nguyên hàm của hàm số \( \frac{f(x)}{x} \). Tìm nguyên hàm của hàm số \( {f}'(x)\ln x \).
A. \(\int{{f}'(x)\ln xdx}=-\left( \frac{\ln x}{{{x}^{2}}}+\frac{1}{{{x}^{2}}} \right)+C\)
B. \(\int{{f}'(x)\ln xdx}=\frac{\ln x}{{{x}^{2}}}+\frac{1}{2{{x}^{2}}}+C\)
C. \(\int{{f}'(x)\ln xdx}=-\left( \frac{\ln x}{{{x}^{2}}}+\frac{1}{2{{x}^{2}}} \right)+C\)
D. \(\int{{f}'(x)\ln xdx}=\frac{\ln x}{{{x}^{2}}}+\frac{1}{{{x}^{2}}}+C\)
Hướng dẫn giải:
Đáp án C.
Ta có: \(\int{\frac{f(x)}{x}dx}=F(x)\Rightarrow {F}'(x)=\frac{f(x)}{x}=-\frac{1}{{{x}^{3}}}\)\(\Rightarrow f(x)=-\frac{1}{{{x}^{2}}}\Rightarrow {f}'(x)=\frac{2}{{{x}^{3}}}\)
Suy ra: \( \int{{f}'(x)\ln xdx}=\int{\frac{2}{{{x}^{3}}}\ln xdx} \).
Đặt \( \left\{ \begin{align} & u=\ln x \\ & dv=\frac{2}{{{x}^{3}}}dx \\ \end{align} \right. \) \( \Rightarrow \left\{ \begin{align} & du=\frac{dx}{x} \\ & v=-\frac{1}{{{x}^{2}}} \\ \end{align} \right. \)
Khi đó: \( \int{{f}'(x)\ln xdx}=\int{\frac{\ln x}{{{x}^{3}}}dx}=-\frac{\ln x}{{{x}^{2}}}+\int{\frac{1}{{{x}^{3}}}dx}=-\left( \frac{\ln x}{{{x}^{2}}}+\frac{1}{2{{x}^{2}}} \right)+C \)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!