cho điểm E(2;1;3), mặt phẳng (P):2x+2y−z−3=0 và mặt cầu (S):(x−3)^2+(y−2)^2+(z−5)^2=36. Gọi Δ là đường thẳng đi qua E, nằm trong (P) và cắt (S) tại (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình của Δ là

Trong không gian với hệ trục tọa độ Oxyz, cho điểm E(2;1;3), mặt phẳng \( (P):2x+2y-z-3=0 \) và mặt cầu  \( (S):{{(x-3)}^{2}}+{{(y-2)}^{2}}+{{(z-5)}^{2}}=36 \). Gọi  \( \Delta  \) là đường thẳng đi qua E, nằm trong (P) và cắt (S) tại (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình của  \( \Delta  \) là:

A.\( \left\{ \begin{align} & x=2+9t \\  & y=1+9t \\  & z=3+8t \\ \end{align} \right. \)           

B.  \( \left\{ \begin{align}  & x=2-5t \\  & y=1+3t \\  & z=3 \\ \end{align} \right. \)  

C.  \( \left\{ \begin{align}  & z=2+t \\  & y=1-t \\  & z=3 \\ \end{align} \right. \)           

D.  \( \left\{ \begin{align}  & x=2+4t \\  & y=1+3t \\  & z=3-3t \\ \end{align} \right. \)

Hướng dẫn giải:

Chọn C

Mặt cầu (S) có tâm I(3;2;5) và bán kính  \( R=6 \).

 \( IE=\sqrt{{{1}^{2}}+{{1}^{2}}+{{2}^{2}}}=\sqrt{6}<R\Rightarrow  \) điểm E nằm trong mặt cầu (S).

Gọi H là hình chiếu của I trên mặt phẳng (P), A và B là hai giao điểm của  \( \Delta  \) với (S).

Khi đó,  \( A{{B}_{\min }}\Leftrightarrow AB\bot OE  \), mà  \( AB\bot IH  \) nên  \( AB\bot (HIE)\Rightarrow AB\bot IE  \).

Suy ra:  \( {{\vec{u}}_{\Delta }}=\left[ {{{\vec{n}}}_{P}},\overrightarrow{EI} \right]=(5;-5;0)=5(1;-1;0) \).

Vậy phương trình của  \( \Delta :\left\{ \begin{align}  & x=2+t \\  & y=1-t \\  & z=3 \\ \end{align} \right. \).

Các bài toán liên quan

 

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *