cho các số phức z1=−2+t, z2=2+I và số phức z thay đổi thỏa mãn |z−z1|^2+|z−z2|^2=16. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z|. Giá trị biểu thức M^2−m^2 bằng

Cho các số phức \( {{z}_{1}}=-2+t,\text{ }{{z}_{2}}=2+I \) và số phức z thay đổi thỏa mãn  \( {{\left| z-{{z}_{1}} \right|}^{2}}+{{\left| z-{{z}_{2}} \right|}^{2}}=16 \). Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của  \( \left| z \right| \). Giá trị biểu thức \({{M}^{2}}-{{m}^{2}}\) bằng

A. 15

B. 7

C. 11                                

D. 8

Hướng dẫn giải:

Chọn D

Giả sử  \( z=x+yi\text{ }(x,y\in \mathbb{R}) \).

Ta có:  \( {{\left| z-{{z}_{1}} \right|}^{2}}+{{\left| z-{{z}_{2}} \right|}^{2}}=16\Leftrightarrow {{\left| x+yi+2-i \right|}^{2}}+{{\left| x+yi-2-i \right|}^{2}}=16\Leftrightarrow {{x}^{2}}+{{(y-1)}^{2}}=4 \).

Suy ra tập hợp điểm biểu diễn của số phức z là đường tròn tâm số phức I(0;1), bán kính  \( R=2 \).

Do đó:  \( m=1,M=3 \).

Vậy  \( {{M}^{2}}-{{m}^{2}}=8 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *