Cho các số không âm a, b, c thỏa mãn \( \sqrt{a}+\sqrt{b}+\sqrt{c}=3 \). Chứng minh rằng: \( \sqrt{{{a}^{2}}+ab+{{b}^{2}}}+\sqrt{{{b}^{2}}+bc+{{c}^{2}}}+\sqrt{{{c}^{2}}+ca+{{a}^{2}}}\ge 3\sqrt{3} \).
Hướng dẫn giải:
Ta có: \( \sqrt{{{a}^{2}}+ab+{{b}^{2}}}+\sqrt{{{b}^{2}}+bc+{{c}^{2}}}+\sqrt{{{c}^{2}}+ca+{{a}^{2}}}\ge 3\sqrt{3} \)
\( \Leftrightarrow \sqrt{2{{a}^{2}}+2ab+2{{b}^{2}}}+\sqrt{2{{b}^{2}}+2bc+2{{c}^{2}}}+\sqrt{2{{c}^{2}}+2ca+2{{a}^{2}}}\ge 3\sqrt{6} \)
\( \Leftrightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{(a+b)}^{2}}}+\sqrt{{{b}^{2}}+{{c}^{2}}+{{(b+c)}^{2}}}+\sqrt{{{a}^{2}}+{{c}^{2}}+{{(a+c)}^{2}}}\ge 3\sqrt{6} \)
Áp dụng bất đẳng thức Bunhiakcopki: \(x.a+y.b\le \sqrt{({{x}^{2}}+{{y}^{2}})({{a}^{2}}+{{b}^{2}})}\).
Chứng minh: \(x.a+y.b\le \sqrt{({{x}^{2}}+{{y}^{2}})({{a}^{2}}+{{b}^{2}})}\)
\( \Leftrightarrow {{(x.a+y.b)}^{2}}\le {{x}^{2}}{{a}^{2}}+{{y}^{2}}{{b}^{2}}+{{x}^{2}}{{b}^{2}}+{{y}^{2}}{{a}^{2}}\Leftrightarrow {{x}^{2}}{{b}^{2}}+{{y}^{2}}{{a}^{2}}-2x.a.y.b\ge 0 \)
\( \Leftrightarrow {{(x.b-y.a)}^{2}}\ge 0 \) (luôn đúng)
Dấu “=” xảy ra \( \Leftrightarrow \frac{a}{x}=\frac{b}{y} \).
Áp dụng cho bài toán:
\(a+b\le \sqrt{({{1}^{2}}+{{1}^{2}}).({{a}^{2}}+{{b}^{2}})}=\sqrt{2({{a}^{2}}+{{b}^{2}})}\Leftrightarrow {{a}^{2}}+{{b}^{2}}\ge \frac{{{(a+b)}^{2}}}{2}\) (1)
\( b+c\le \sqrt{({{1}^{2}}+{{1}^{2}}).({{b}^{2}}+{{c}^{2}})}=\sqrt{2({{b}^{2}}+{{c}^{2}})}\Leftrightarrow {{b}^{2}}+{{c}^{2}}\ge \frac{{{(b+c)}^{2}}}{2} \) (2)
\(a+c\le \sqrt{({{1}^{2}}+{{1}^{2}}).({{a}^{2}}+{{c}^{2}})}=\sqrt{2({{a}^{2}}+{{c}^{2}})}\Leftrightarrow {{a}^{2}}+{{c}^{2}}\ge \frac{{{(a+c)}^{2}}}{2}\) (3)
Do đó: \( \sqrt{{{a}^{2}}+{{b}^{2}}+{{(a+b)}^{2}}}+\sqrt{{{b}^{2}}+{{c}^{2}}+{{(b+c)}^{2}}}+\sqrt{{{a}^{2}}+{{c}^{2}}+{{(a+c)}^{2}}} \)
\( \ge \sqrt{\frac{3}{2}{{(a+b)}^{2}}}+\sqrt{\frac{3}{2}{{(b+c)}^{2}}}+\sqrt{\frac{3}{2}{{(a+c)}^{2}}}=\frac{\sqrt{6}}{2}(2a+2b+2c)=3\sqrt{6} \) (đpcm)
Dấu “=” xảy ra \( \Leftrightarrow \) dấu “=” ở (1), (2), (3) đồng thời xảy ra và thỏa mãn \( \sqrt{a}+\sqrt{b}+\sqrt{c}=3\Leftrightarrow a=b=c=1 \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!