Cho các hàm số y=f(x);y=f(f(x)); y=f(x^2+2x−1) có đồ thị lần lượt là (C1);(C2);(C3). Đường thẳng x=2 cắt (C1);(C2);(C3) lần lượt tại A, B, C

Cho các hàm số \( y=f(x);y=f\left( f(x) \right) \);  \( y=f({{x}^{2}}+2x-1) \) có đồ thị lần lượt là  \( ({{C}_{1}});({{C}_{2}});({{C}_{3}}) \). Đường thẳng  \( x=2 \) cắt  \( ({{C}_{1}});({{C}_{2}});({{C}_{3}}) \) lần lượt tại A, B, C. Biết rằng phương trình tiếp tuyến của  \( ({{C}_{1}}) \) tại A và của  \( ({{C}_{2}}) \) tại B lần lượt là  \( y=2x+3 \) và  \( y=8x+5 \). Phương trình tiếp tuyến của  \( ({{C}_{3}}) \) tại C là:

A. \( y=8x-9 \).

B.  \( y=12x+3 \).            

C.  \( y=24x-27 \).           

D.  \( y=4x+1 \).

Hướng dẫn giải:

Chọn C

+ Phương trình tiếp tuyến của đồ thị hàm số  \( y=f(x) \) tại điểm  \( x=2 \):

 \( y={f}'(2)(x-2)+f(2)={f}'(2)x-2{f}'(2)+f(2) \).

Thực hiện phép đồng nhất thức với phương trình tiếp tuyến  \( y=2x+3 \) ta được:

 \( \left\{ \begin{align}  & {f}'(2)=2 \\  & -2{f}'(2)+f(2)=3 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & {f}'(2)=2 \\  & f(2)=7 \\ \end{align} \right. \).

+ Phương trình tiếp tuyến của đồ thị hàm số  \( y=f\left( f(x) \right) \) tại điểm  \( x=2 \):

 \( y={f}'(2).{f}’\left( f(2) \right).(x-2)+f\left( f(2) \right)=2{f}'(7).(x-2)+f(7)=2{f}'(7)x-4{f}'(7)+f(7) \).

Thực hiện phép đồng nhất thức với phương trình tiếp tuyến  \( y=8x+5 \) ta được:

 \( \left\{ \begin{align}  & 2{f}'(7)=8 \\  & -4{f}'(7)+f(7)=5 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & {f}'(7)=4 \\  & f(7)=21 \\ \end{align} \right. \).

+ Phương trình tiếp tuyến của đồ thị hàm số  \( y=f({{x}^{2}}+2x-1) \) tại điểm  \( x=2 \) là:

 \( y=6{f}'(7).(x-2)+f(7)=24(x-2)+21=24x-27 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *