Cho tam giác vuông ABC (vuông tại A), đường tròn tâm B bán kính BA và đường tròn tâm C, bán kính CA cắt nhau tại D (D khác A), BC cắt chuyển động tròn tâm (B) tại E, F và cắt đường tròn tâm (C) tại M, N

Cho tam giác vuông ABC (vuông tại A), đường tròn tâm B bán kính BA và đường tròn tâm C, bán kính CA cắt nhau tại D (D khác A), BC cắt chuyển động tròn tâm (B) tại E, F và cắt đường tròn tâm (C) tại M, N. Đường thẳng DM cắt AE tại P, DQ cắt AN tại Q.Kéo dài DM cắt đường tròn (B) tại I, DF cắt đường tròn (C) tại H. Chứng minh: \( \frac{IP}{IM}.\frac{HF}{HQ}=\frac{AB}{AC} \).

Hướng dẫn giải:

\( \widehat{AEN}+\widehat{ANE}=\frac{1}{2}\left( \widehat{B}+\widehat{C} \right)={{45}^{O}} \)

 \( \widehat{AEF}=\widehat{ADF},\text{ }\widehat{ANM}=\widehat{ADM} \)

 \( \Rightarrow \widehat{IDF}=\widehat{IDA}+\widehat{ADF}={{45}^{O}} \)

 \( \Rightarrow \widehat{IBF}={{90}^{O}}\Rightarrow IB\bot EF\Rightarrow \widehat{IAE}={{45}^{O}} \).

 \( \Rightarrow I,A,N \) thẳng hàng, tương tự E, A, H thẳng hàng.

 \( \Rightarrow \widehat{EAN}={{135}^{O}}\Rightarrow \) Tứ giác APDQ nội tiếp.

 \( \Rightarrow \widehat{APQ}=\widehat{ADQ}=\widehat{AEC}\Rightarrow PQ\parallel EN\Rightarrow \frac{AP}{AQ}=\frac{AE}{AN} \).

Áp dụng định lí Menelaus với  \( \Delta PEM \), cát tuyến IAN:  \( \frac{IP}{IM}.\frac{NM}{NE}.\frac{AE}{AP}=1 \).

Tương tự với  \( \Delta QFN\Rightarrow \frac{HF}{HQ}.\frac{AQ}{AN}.\frac{EN}{EF}=1 \).

Nhân hai đẳng thức trên ta được:  \( \frac{IP}{IM}.\frac{HF}{HQ}.\frac{NM.AE.AQ}{AP.EF.AN}=1\Rightarrow \frac{IP}{IM}.\frac{HF}{HQ}=\frac{EF}{NM}=\frac{AB}{AC} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho tam giác ABC ( AC>AB), đường phân giác góc A và đường trung trực BC cắt nhau tại D, gọi H, K là hình chiếu của D trên AC và AB. Chứng minh rằng cạnh BC, đường trung trực BC và HK đồng quy

Cho tam giác ABC ( \( AC>AB \)), đường phân giác góc A và đường trung trực BC cắt nhau tại D, gọi H, K là hình chiếu của D trên AC và AB. Chứng minh rằng cạnh BC, đường trung trực BC và HK đồng quy.

Hướng dẫn giải:

AD là phân giác góc  \( \widehat{A} \) \( \Rightarrow DK=DH \), D nằm trên trung trực BC  \( \Rightarrow DB=DC \).

 \( \Rightarrow \Delta DHC=\Delta DKB\Rightarrow CH=BK \) và  \( AH=AK \).

Gọi giao điểm của HK và BC là I, áp dụng định lí Menelaus.

 \( \Rightarrow \frac{IB}{IC}.\frac{HC}{HA}.\frac{KA}{KB}=1\Rightarrow IB=IC\Rightarrow \) (đpcm).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho tứ giác ABCD, đường thẳng d cắt AB, BC, CA, AD lần lượt tại M, N, P, Q. Chứng minh MA/MB.NB/NC.PC/PD.QD/QA=1

Cho tứ giác ABCD, đường thẳng d cắt AB, BC, CA, AD lần lượt tại M, N, P, Q. Chứng minh \( \frac{MA}{MB}.\frac{NB}{NC}.\frac{PC}{PD}.\frac{QD}{QA}=1 \).

Hướng dẫn giải:

Từ A, B kẻ các đường thẳng song song với CD cắt MN tại E và F, theo định lí Thales, ta có:

 \( \frac{MA}{MB}=\frac{AE}{IB},\text{ }\frac{NB}{NC}=\frac{BI}{CP},\text{ }\frac{QD}{QA}=\frac{PD}{AE} \).

 \( \Rightarrow \frac{MA}{MB}.\frac{NB}{NC}.\frac{QD}{QA}=\frac{AE}{IB}.\frac{BI}{CP}.\frac{PD}{AE}=\frac{PD}{CP} \)

 \( \Rightarrow \frac{MA}{MB}.\frac{NB}{NC}.\frac{PC}{PD}.\frac{QD}{QA}=1 \).

Chú ý,áp dụng cho tứ giác chỉ có chiều thuận.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho hình thang ABCD ( AB∥CD, AB<CD). M, N trên AB và CD sao cho AMMB=DNNC, P và Q trên MN sao cho DPCˆ=ABCˆ và AQBˆ=BCDˆ. Chứng minh rằng P, Q, B, C nằm trên một đường tròn

Cho hình thang ABCD ( \( AB\parallel CD,\text{ }AB<CD \)). M, N trên AB và CD sao cho  \( \frac{AM}{MB}=\frac{DN}{NC} \), P và Q trên MN sao cho \(\widehat{DPC}=\widehat{ABC}\) và  \( \widehat{AQB}=\widehat{BCD} \). Chứng minh rằng P, Q, B, C nằm trên một đường tròn.

Hướng dẫn giải:

Gọi E là giao điểm AQ và DP, và F là giao điểm BQ và CP \(\Rightarrow \widehat{EPF}=\widehat{ABC}\) và \(\widehat{FQE}=\widehat{BCD}\).

Ta có:  \( \widehat{ABC}+\widehat{BCD}={{180}^{O}}\Rightarrow PFQE \) là tứ giác nội tiếp.

Áp dụng định lí Menelaus đối với  \( \Delta DOP \) với đường thẳng AQ và  \( \Delta COP \) với đường thẳng BQ:

 \( \frac{AD}{AO}.\frac{QO}{QP}.\frac{EP}{ED}=1 \) và  \( \frac{BC}{BO}.\frac{QO}{QP}.\frac{FP}{FC}=1 \) \( \Rightarrow \frac{AD}{AO}.\frac{QO}{QP}.\frac{EP}{ED}=\frac{BC}{BO}.\frac{QO}{QP}.\frac{FP}{FC} \).

Do  \( \frac{AD}{AO}=\frac{BC}{BO}\Rightarrow \frac{EP}{ED}=\frac{FP}{FC}\Rightarrow EF\parallel CD\parallel AB \).

 \( \Rightarrow \widehat{ABC}=\widehat{ABQ}+\widehat{QBC}=\widehat{EFQ}+\widehat{QBC}=\widehat{EPQ}+\widehat{QBC} \).

 \( \widehat{ABC}=\widehat{DPC}=\widehat{EPQ}+\widehat{QPC}\Rightarrow \widehat{QBC}=\widehat{QPC} \).

 \( \Rightarrow P,Q,C,B \) nằm trên một đường tròn.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho hai đoạn thẳng AC và BD cắt nhau tại E. M trên đoạn AB và N trên đoạn CD sao cho M, E, N thẳng hàng. Chứng minh MN≤max{AC,BD}

Cho hai đoạn thẳng AC và BD cắt nhau tại E. M trên đoạn AB và N trên đoạn CD sao cho M, E, N thẳng hàng. Chứng minh \( MN\le \max \{AC,BD\} \).

Hướng dẫn giải:

+ Trường hợp  \( AB\parallel CD \).

Từ M kẻ đường thẳng song song với BD cắt CD tại P và đường thẳng song song với AC cắt CD tại Q.

 \( \Rightarrow \) Tứ giác MPDB và MACQ là hình bình hành.

 \( \Rightarrow BD=MP \) và  \( AC=MQ \).

Ta chứng minh:  \( MN\le \max \{MP,MQ\} \).

 \( N\in CD\Rightarrow MN\le \max \{MP,MQ\} \)

 \( \Rightarrow MN\le \max \{AC,BD\} \).

+ Trường hợp AB không song song với CD.

Giả sử  \( \widehat{A}+\widehat{D}>{{180}^{O}}\Rightarrow \widehat{B}+\widehat{C}<{{180}^{O}} \).

Từ D kẻ đường thẳng song song với AB cắt MN, AC tại G và K.

Áp dụng định lí Menelaus đối với  \( \Delta DKC\) với ba điểm E, G, N  \( \Rightarrow \frac{GK}{GD}.\frac{ND}{NC}.\frac{EC}{EK}=1 \) .

 \( \Rightarrow \frac{GK}{GD}.\frac{ND}{NC}=\frac{EK}{EC}<1\Rightarrow \frac{GK}{GD}<\frac{NC}{ND} \)  (1)

 \( AB\parallel DK\Rightarrow \frac{GK}{GD}=\frac{MA}{MB} \)  (2)

Kẻ  \( CQ\parallel AB \) và  \( MQ\parallel AC \),  \( DP\parallel AB \) và  \( MP\parallel BD \).

 \( \Rightarrow  \) Tứ giác AMQC và BMPD là hình bình hành.

 \( \Rightarrow AC=MQ,\text{ }AM=CQ \) và  \( BD=MP,BM=DP\Rightarrow CQ\parallel AB\parallel DP \), gọi I là giao điểm của PQ với CD.

 \( \Rightarrow \frac{CI}{ID}=\frac{CQ}{DP}=\frac{MA}{MB} \), từ (1) và (2)  \( \frac{NC}{ND}>\frac{IC}{ID}=\frac{MA}{MB} \).

 \( \Rightarrow DI\ge DN \), giao điểm MN cắt PQ tại F  \( \Rightarrow MN\le MF \).

 \( \Rightarrow MN<\max \{MP,MQ\}=\max \{BD,AC\} \).

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho tam giác ABC, gọi I là trung điểm của BC. Qua I kẻ đường thẳng d1 cắt CA, AB tại M, N và đường thẳng d2 cắt cạnh CA, AB tại P, Q. Đường thẳng PN cắt cạnh BC tại E và đường thẳng QM cắt cạnh BC tại F. Chứng minh IE=IF

Cho tam giác ABC, gọi I là trung điểm của BC. Qua I kẻ đường thẳng d1 cắt CA, AB tại M, N và đường thẳng d2 cắt cạnh CA, AB tại P, Q. Đường thẳng PN cắt cạnh BC tại E và đường thẳng QM cắt cạnh BC tại F. Chứng minh \( IE=IF \).

Hướng dẫn giải:

Áp dụng định lí Menelaus trong  \( \Delta ABC \) với cát tuyến MNI, ta có:

 \( \frac{IB}{IC}.\frac{MC}{MA}.\frac{NA}{NB}=1\Rightarrow \frac{MC}{MA}.\frac{NA}{NB}=1 \).

Với cát tuyến PQI, ta có:

 \( \Rightarrow \frac{IC}{IB}.\frac{QB}{QA}.\frac{PA}{PC}=1\Rightarrow \frac{QB}{QA}.\frac{PA}{PC}=1 \)

 \( \Rightarrow \frac{MC}{MA}.\frac{NA}{NB}=\frac{QB}{QA}.\frac{PA}{PC}\Rightarrow \frac{PC}{PA}.\frac{NA}{NB}=\frac{QB}{QA}.\frac{MA}{MC} \)  (*)

Tương tự đối với cát tuyến NEP và QMF:

 \( \frac{EB}{EC}.\frac{PC}{PA}.\frac{NA}{NB}=1 \) và  \( \frac{FC}{FB}.\frac{QB}{QA}.\frac{MA}{MC}=1 \)

 \( \Rightarrow \frac{EB}{EC}.\frac{PC}{PA}.\frac{NA}{NB}=\frac{FC}{FB}.\frac{QB}{QA}.\frac{MA}{MC} \) kết hợp với (*), ta có:

 \( \frac{EB}{EC}=\frac{FC}{FB}\Rightarrow \frac{EB}{EB+EC}=\frac{FC}{FB+FC}\Rightarrow \frac{EB}{BC}=\frac{FC}{BC} \)

 \( \Rightarrow EB=FC\Rightarrow IE=IF \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho tứ giác ABCD và I, J trung điểm của AD và BC. Gọi G, E là trọng tâm tam giác ABC và ABD. Chứng minh rằng DG, CE, IJ đồng quy, từ đó suy ra GE song song với CD

Cho tứ giác ABCD và I, J trung điểm của AD và BC. Gọi G, E là trọng tâm tam giác ABC và ABD. Chứng minh rằng DG, CE, IJ đồng quy, từ đó suy ra GE song song với CD.

Hướng dẫn giải:

G là trọng tâm của  \( \Delta ABC\Rightarrow AG=2GJ \).

Áp dụng định lí Menelaus với  \( \Delta AIJ \), đường thẳng DG cắt tại M  \( \Rightarrow \frac{DA}{DI}.\frac{MI}{MJ}.\frac{GJ}{GA}=1 \).

 \( IA=ID\Rightarrow DA=2DI\Rightarrow 2.\frac{MI}{MJ}.\frac{1}{2}=1 \).

 \( \Rightarrow MI=MJ \), E là trọng tâm  \( \Delta ABD \), hoàn toàn tương tự

 \( \Rightarrow CE \) đi qua trung điểm của IJ  \( \Rightarrow \)  ba đường thẳng DG, CE, IJ đồng quy.

Áp dụng định lí Menelaus với  \( \Delta ADG \), ứng với ba điểm M, I, J thẳng hàng

 \( \Rightarrow \frac{IA}{ID}.\frac{MD}{MG}.\frac{JG}{JA}=1\Rightarrow \frac{MD}{MG}.\frac{1}{3}=1\Rightarrow \frac{MD}{MG}=3 \), tương tự  \( \Rightarrow \frac{MC}{ME}=3 \).

 \( \Rightarrow \frac{MD}{MG}=\frac{MC}{ME} \), theo định lí Thales thì EG song song với CD.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Gọi I là tâm đường tròn nội tiếp tam giác ABC, đường thẳng AI cắt đường tròn ngoại tiếp tam giác ABC tại D, E là điểm trên cung BDC⌢, F trên cạnh BC thỏa mãn BAFˆ=CAEˆ<12BACˆ, gọi G là trung điểm IF

Gọi I là tâm đường tròn nội tiếp tam giác ABC, đường thẳng AI cắt đường tròn ngoại tiếp tam giác ABC tại D, E là điểm trên cung \( \overset\frown{BDC} \), F trên cạnh BC thỏa mãn  \( \widehat{BAF}=\widehat{CAE}<\frac{1}{2}\widehat{BAC} \), gọi G là trung điểm IF. Chứng minh rằng giao điểm của DG và EI nằm trên đường tròn ngoại tiếp tam giác ABC.

Hướng dẫn giải:

Gọi P là giao điểm của EI cắt đường tròn ngoại tiếp tam giác ABC, đường thẳng AI cắt BC tại J; AF cắt đường tròn ngoại tiếp  \( \Delta ABC \) tại K, cắt DP tại Q.

Theo giả thiết  \( \widehat{BAF}=\widehat{CAE}<\frac{1}{2}\widehat{BAC}\Rightarrow \overset\frown{CE}=\overset\frown{BK}\Rightarrow CE=BK\Rightarrow BC\parallel KE \);

AD là phân giác góc  \( \widehat{A}\Rightarrow \widehat{KAD}=\widehat{DPE} \).

 \( \Rightarrow APQI \) nội tiếp  \( \Rightarrow \widehat{AQI}=\widehat{API}=\widehat{AKE}\Rightarrow QI\parallel KE\Rightarrow QI\parallel KE\parallel BC \).

 \( \Rightarrow \frac{QF}{QA}=\frac{IJ}{IA} \), AI cắt BC tại J, I là tâm đường tròn nội tiếp  \( \Rightarrow \frac{JI}{IA}=\frac{CJ}{CA} \);

 \( \widehat{BCD}=\widehat{BAD}=\widehat{CAD}\Rightarrow \Delta DCJ\backsim \Delta DAC \) (g.g).

 \( \Rightarrow \frac{CJ}{AC}=\frac{DC}{DA} \), kết hợp  \( DI=DC\Rightarrow \frac{DC}{DA}=\frac{ID}{AD} \).

 \( \frac{FQ}{QA}=\frac{JI}{AI}=\frac{CJ}{AC}=\frac{DC}{AD}=\frac{ID}{AD} \)   (*)

Theo Menelaus với  \( \Delta AIF \) cát tuyến PQD, giả sử PQD cắt FI tại G’, ta có:  \( \frac{QA}{QF}.\frac{{G}’F}{{G}’I}.\frac{DI}{DA}=1 \), kết hợp  \( (*)\Rightarrow \frac{{G}’F}{{G}’I}=1\Rightarrow {G}’F={G}’I\Rightarrow G\equiv {G}’ \).

 \( \Rightarrow DG \) và EI cắt nhau trên đường tròn ngoại tiếp  \( \Delta ABC \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho tam giác vuông ABC ( Aˆ=90O), D là điểm trên cạnh BC kẻ tiếp tuyến DE với đường tròn tâm C, đường kính CA. Đường thẳng qua A vuông góc với BC cắt đường thẳng CE tại F

Cho tam giác vuông ABC ( \( \widehat{A}={{90}^{O}} \)), D là điểm trên cạnh BC kẻ tiếp tuyến DE với đường tròn tâm C, đường kính CA. Đường thẳng qua A vuông góc với BC cắt đường thẳng CE tại F, đường thẳng BF cắt DE tại M, qua B kẻ đường thẳng song song với CM cắt DE tại N. Chứng minh rằng M là trung điểm NE.

Hướng dẫn giải:

EC cắt đường tròn tâm C, bán kính CA tại J, dựng đường tròn đường kính DC cắt AC tại I.

Theo giả thiết  \( DE\bot CE\Rightarrow \widehat{DIC}={{90}^{O}} \)

 \( \Rightarrow \widehat{EIC}=\widehat{EDC},\text{ }AF\bot CD \).

 \( \Rightarrow \widehat{AFC}=\widehat{EDC}\Rightarrow \widehat{EIC}=\widehat{AFC} \).

 \( \Rightarrow \) Tứ giác AIFE nội tiếp.

Mặt khác:  \( CA=CE\Rightarrow \widehat{CEA}=\widehat{CAE}=\widehat{CIF} \).

 \( \Rightarrow IF\parallel AE\Rightarrow \frac{EF}{EC}=\frac{AI}{AC},\text{ }\widehat{A}={{90}^{O}} \) \( \Rightarrow AB\parallel DI\Rightarrow \frac{IC}{IA}=\frac{DC}{DB},\text{ }CF=CI \).

Áp dụng định lí Menelaus trong  \( \Delta BFC \), cát tuyến DME:

 \( \frac{MB}{MF}.\frac{EF}{EC}.\frac{DC}{DB}=1 \).

 \( \frac{MB}{MF}.\frac{AI}{AC}.\frac{IC}{IA}=1\Rightarrow \frac{MB}{MF}=\frac{AC}{IC}=\frac{CJ}{CF}\Rightarrow BJ\parallel CM\Rightarrow ME=MN \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho 6 điểm A, B, C, D, E, F nằm trên đường tròn. AE cắt DF tại M, BE cắt CF tại I và AC cắt BD tại N. Chứng minh rằng M, I, N thẳng hàng

Cho 6 điểm A, B, C, D, E, F nằm trên đường tròn. AE cắt DF tại M, BE cắt CF tại I và AC cắt BD tại N. Chứng minh rằng M, I, N thẳng hàng.

Hướng dẫn giải:

Lời giải:

Giả sử đường thẳng AE cắt đường thẳng CF và BD lần lượt tại P, Q. Đường thẳng BD cắt CF tại G. Áp dụng định lí Menelaus trong  \( \Delta PQG \) với các cát tuyến MFD, IEB, NAC ta có:

 \( \frac{FP}{FG}.\frac{DG}{DQ}.\frac{MQ}{MP}=1\Rightarrow \frac{MQ}{MP}=\frac{FG}{FP}.\frac{DQ}{DG} \).

 \( \frac{BG}{BQ}.\frac{EQ}{EP}.\frac{IP}{IG}=1\Rightarrow \frac{IP}{IG}.\frac{BQ}{BG}.\frac{EP}{EQ} \) và  \( \frac{NG}{NQ}.\frac{AQ}{AP}.\frac{CP}{CG}=1\Rightarrow \frac{NG}{NQ}=\frac{AP}{AQ}.\frac{CG}{CP} \).

Nhân ba đẳng thức với nhau, ta có:

 \( \frac{MQ}{MP}.\frac{IP}{IG}.\frac{NG}{NQ}=\frac{FG}{FP}.\frac{DQ}{DG}.\frac{BQ}{BG}.\frac{EP}{EQ}.\frac{AP}{AQ}.\frac{CG}{CP} \)  (*)

Mặt khác, cát tuyến AE, CF cắt nhau tại P  \( \Rightarrow PA.PE=PC.PF \);

Tương tự  \( QD.QB=QE.QA \) và  \( GF.GC=GD.GB \), thay vào đẳng thức (*)

 \( \Rightarrow \frac{MQ}{MP}.\frac{IP}{IG}.\frac{NG}{NQ}=1\Rightarrow M,I,N \) thẳng hàng.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho tam giác ABC và tam giác A’B’C’. Chứng minh rằng AA’, BB’, CC’ đồng quy khi và chỉ khi các giao điểm của BC và B’C’, CA và C’A’, AB và A’B’ thẳng hàng. (Định lí Desargues)

Cho tam giác ABC và tam giác A’B’C’. Chứng minh rằng AA’, BB’, CC’ đồng quy khi và chỉ khi các giao điểm của BC và B’C’, CA và C’A’, AB và A’B’ thẳng hàng. (Định lí Desargues)

Girard Desargues (1591 – 1661) là nhà toán học người Pháp được tôn vinh là “ông tổ của hình học xạ ảnh” nhưng ông lại theo học kĩ sư quân giới.

Hướng dẫn giải:

Gọi M, N, P lần lượt là các giao điểm của BC và B’C’, CA và C’A’, AB và A’B’.

Phần thuận: Giả sử AA’, BB’ và CC’ cắt nhau tại Q, theo định lí Menelaus với  \( \Delta QAB \) cát tuyến NB’A’

 \( \Rightarrow \frac{NA}{NB}.\frac{{B}’B}{{B}’Q}.\frac{{A}’Q}{{A}’A}=1 \).

Tương tự với  \( \Delta QBC \) và  \( \Delta QAC \), ta có:  \( \frac{MB}{MC}.\frac{{C}’C}{{C}’Q}.\frac{{B}’Q}{{B}’B}=1,\text{ }\frac{PC}{PA}.\frac{{A}’A}{{A}’Q}.\frac{{C}’Q}{{C}’C}=1 \).

Nhân ba đẳng thức với nhau  \( \Rightarrow \frac{NA}{NB}.\frac{MB}{MC}.\frac{PC}{PA}=1\Rightarrow M,N,P \) thẳng hàng.

Phần đảo: Giả sử AA’ và CC’ cắt nhau tại Q, áp dụng định lí Menelaus đối với các  \( \Delta C{C}’P,\text{ }\Delta CPM,\text{ }\Delta MP{C}’ \), ta có:

 \( \frac{Q{C}’}{QC}.\frac{AC}{AP}.\frac{{A}’P}{{A}'{C}’}=1,\text{ }\frac{BC}{BM}.\frac{NM}{NP}.\frac{AP}{AC}=1,\text{ }\frac{{B}’M}{{B}'{C}’}.\frac{{A}'{C}’}{{A}’P}.\frac{NP}{NM}=1 \).

Nhân ba đẳng thức với nhau  \( \Rightarrow \frac{Q{C}’}{QC}.\frac{BC}{BM}.\frac{{B}’M}{{B}'{C}’}=1 \), với  \( \Delta MC{C}’\Rightarrow Q,B,{B}’ \) thẳng hàng  \( \Rightarrow A{A}’,C{C}’ \) và  \( B{B}’ \) đồng quy.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho tam giác ABC, trực tâm H đi qua trung điểm của đường cao kẻ từ đỉnh A. Chứng minh rằng cosA=cosB.cosC

Cho tam giác ABC, trực tâm H đi qua trung điểm của đường cao kẻ từ đỉnh A. Chứng minh rằng \( \cos A=\cos B.\cos C \).

Hướng dẫn giải:

Theo giả thiết H đi qua trung điểm của đường cao kẻ từ đỉnh A

 \( \Rightarrow H \) nằm trong  \( \Delta ABC \).

 \( \Rightarrow \Delta ABC \) nhọn, do tính chất ba đường cao đồng quy tại H.

Áp dụng định lí Menelaus đối với  \( \Delta ABD \), cát tuyến CHE:

 \( \Rightarrow \frac{HA}{HD}.\frac{CD}{CB}.\frac{EB}{EA}=1\Rightarrow \frac{CD}{CB}.\frac{EB}{EA}=1 \).

\(\Rightarrow \frac{EA}{AC}=\frac{CD}{AC}.\frac{EB}{BC},\text{ }CE\bot AB,\text{ }AD\bot BC\)

 \( \Rightarrow \cos A=\cos C.\cos B \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Cho tam giác ABC, M trên cạnh AB thỏa mãn AM=12MB, N trên cạnh BC thỏa mãn CN=2NB, gọi E là giao điểm AN và CM. Tính diện tích của tam giác BEC biết diện tích tam giác ABC bằng 1

Cho tam giác ABC, M trên cạnh AB thỏa mãn \( AM=\frac{1}{2}MB \), N trên cạnh BC thỏa mãn  \( CN=2NB \), gọi E là giao điểm AN và CM. Tính diện tích của tam giác BEC biết diện tích tam giác ABC bằng 1.

Hướng dẫn giải:

Áp dụng định lí Menelaus với  \( \Delta ABN \) và cát tuyến CME.

 \( \Rightarrow \frac{MA}{MB}.\frac{CB}{CN}.\frac{EN}{EA}=1\Rightarrow \frac{MA}{MB}.\frac{CB}{CN}.\frac{EN}{EA}=\frac{1}{2}.\frac{3}{2}.\frac{EN}{EA}=1 \).

 \( \Rightarrow \frac{EN}{EA}=\frac{4}{3}\Rightarrow {{S}_{\Delta BEN}}=\frac{4}{3}{{S}_{\Delta ABE}},\text{ }{{S}_{\Delta CNE}}=\frac{4}{3}{{S}_{\Delta AEC}} \)

 \( \Rightarrow {{S}_{\Delta BEC}}=\frac{4}{3}\left( {{S}_{\Delta ABE}}+{{S}_{\Delta ACE}} \right)=\frac{4}{3}\left( {{S}_{\Delta ABC}}-{{S}_{\Delta BEC}} \right) \)

 \( \Rightarrow \frac{7}{3}{{S}_{\Delta BCE}}=\frac{4}{3}{{S}_{\Delta ABC}}\Rightarrow {{S}_{\Delta BCE}}=\frac{4}{7} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist