Biết rằng hai số phức z1, z2 thỏa mãn |z1−3−4i|=1 và |z2−3−4i|=12. Số phức z có phần thực là a và phần ảo là b thỏa mãn 3a−2b=12. Giá trị nhỏ nhất của P=|z−z1|+|z−2z2|+2 bằng

Biết rằng hai số phức z1, z2 thỏa mãn \( \left| {{z}_{1}}-3-4i \right|=1 \) và  \( \left| {{z}_{2}}-3-4i \right|=\frac{1}{2} \). Số phức z có phần thực là a và phần ảo là b thỏa mãn  \( 3a-2b=12 \). Giá trị nhỏ nhất của  \( P=\left| z-{{z}_{1}} \right|+\left| z-2{{z}_{2}} \right|+2 \) bằng

A. \( {{P}_{\min }}=\frac{\sqrt{9945}}{11} \)

B.  \( {{P}_{\min }}=5-2\sqrt{3} \)             

C.  \( {{P}_{\min }}=\frac{\sqrt{9945}}{13} \)                                   

D.  \( {{P}_{\min }}=5+2\sqrt{5} \)

Hướng dẫn giải:

Chọn C

Gọi M1, M2, M lần lượt là điểm biểu diễn cho số phức z1, 2z2, z trên hệ tọa độ Oxy. Khi đó quỹ tích của điểm M1 là đường tròn (C1) tâm I(3;4), bán kính R = 1; quỹ tích của điểm M2 là đường tròn (C2) tâm I(6;8), bán kính R= 1; quỹ tích của điểm M à đường thẳng  \( d:3x-2y-12=0 \).

Bài toán trở thành tìm giá trị nhỏ nhất của  \( M{{M}_{1}}+M{{M}_{2}}+2 \).

Gọi (C3) có tâm  \( {{I}_{3}}\left( \frac{138}{13};\frac{64}{13} \right),\text{ }R=1 \) là đường tròn đối xứng với (C2) qua d. Khi đó  \( {{\left( M{{M}_{1}}+M{{M}_{2}}+2 \right)}_{\min }}={{\left( M{{M}_{1}}+M{{M}_{3}}+2 \right)}_{\min }} \) với  \( {{M}_{3}}\in ({{C}_{3}}) \).

Gọi A, B lần lượt là giao điểm của đoạn thẳng  \( {{I}_{1}}{{I}_{3}} \) với (C1), (C3). Khi đó với mọi điểm  \( {{M}_{1}}\in ({{C}_{1}}),{{M}_{3}}\in ({{C}_{3}}),M\in d \) ta có:  \( M{{M}_{1}}+M{{M}_{3}}+2\ge AB+2 \), dấu “=” xảy ra khi  \( {{M}_{1}}\equiv A,\text{ }{{M}_{3}}\equiv B \).

Do đó:  \( {{P}_{\min }}=AB+2={{I}_{1}}{{I}_{3}}-2+2={{I}_{1}}{{I}_{3}}=\frac{\sqrt{9945}}{13} \).

 

Các bài toán mới!

 

Hệ Thống Trung Tâm Nhân Tài Việt!

Xét các số phức z=a+bi (a,b∈R) thỏa mãn |z−3−2i|=2. Tính a+b khi |z+1−2i|+2|z−2−5i| đạt giá trị nhỏ nhất

Xét các số phức \( z=a+bi\text{ }(a,b\in \mathbb{R}) \) thỏa mãn  \( \left| z-3-2i \right|=2 \). Tính  \( a+b \) khi  \( \left| z+1-2i \right|+2\left| z-2-5i \right| \) đạt giá trị nhỏ nhất.

A. \( 4-\sqrt{3} \)

B.  \( 2+\sqrt{3} \)           

C. 3                                   

D.  \( 4+\sqrt{3} \)

Hướng dẫn giải:

Chọn D

Cách 1:

Đặt  \( z-3-2i=w \) với  \( w=x+yi\text{ }(x,y\in \mathbb{R}) \). Theo bài ra ta có:  \( \left| w \right|=2\Leftrightarrow {{x}^{2}}+{{y}^{2}}=4 \).

Ta có:  \( P=\left| z+1-2i \right|+2\left| z-2-5i \right|=\left| w+4 \right|+2\left| w+1-3i \right|=\sqrt{{{(x+4)}^{2}}+{{y}^{2}}}+2\sqrt{{{(x+1)}^{2}}+{{(y-3)}^{2}}} \)

\( =\sqrt{20+8x}+2\sqrt{{{(x+1)}^{2}}+{{(y-3)}^{2}}}=2\sqrt{5+2x}+2\sqrt{{{(x+1)}^{2}}+{{(y-3)}^{2}}} \)

\( =\left( \sqrt{{{x}^{2}}+{{y}^{2}}+2x+1}+\sqrt{{{(x+1)}^{2}}+{{(y-3)}^{2}}} \right)=2\left( \sqrt{{{(x+1)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+1)}^{2}}+{{(y-3)}^{2}}} \right) \)

\( \ge 2\left( \left| y \right|+\left| y-3 \right| \right)\ge 2\left| y+3-y \right|=6 \).

\( P=6\Leftrightarrow \left\{ \begin{align}  & x=-1 \\  & y(3-y)\ge 0 \\  & {{x}^{2}}+{{y}^{2}}=4 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & x=-1 \\  & y=\sqrt{3} \\ \end{align} \right. \).

Vậy giá trị nhỏ nhất của P bằng 6 đạt được khi  \( z=2+\left( 2+\sqrt{3} \right)I \).

Cách 2:

\( \left| z-3-2i \right|=2\Rightarrow MI=2\Rightarrow M \) thuộc đường tròn tâm I(3;2) và bán kính bằng 2.

\( P=\left| z+1-2i \right|+2\left| z-2-5i \right|=MA+2MB \) với A(1;2), B(2;5).

Ta có:  \( IM=2,\text{ }IA=4 \). Chọn K(2;2) thì  \( IK=1 \). Do đó ta có:  \( IA.IK=I{{M}^{2}}\Rightarrow \frac{IA}{IM}=\frac{IM}{IK} \).

\( \Rightarrow \Delta IAM\backsim \Delta IMK\Rightarrow \frac{AM}{MK}=\frac{IM}{IK}=2\Rightarrow AM=2MK \).

Từ đó  \( P=MA+2MB=2(MK+MB)\ge 2BK \).

Dấu “=” xảy ra khi và chỉ khi M, K, B thẳng hàng và M thuộc đoạn thẳng BK.

Từ đó tìm được  \( M\left( 2;2+\sqrt{3} \right) \).

Cách 3:

Gọi M(a;b) là điểm biểu diễn số phức  \( z=a+bi \). Đặt I(3;2), A(-1;2) và B(2;5).

Ta xét bài toán: Tìm điểm M thuộc đường tròn (C) có tâm I, bán kính R = 2 sao cho biểu thức  \( P=MA+2MB \) đạt giá trị nhỏ nhất.

Trước tiên, ta tìm điểm K(x;y) sao cho  \( MA=2MK,\forall M\in (C) \).

Ta có:  \( MA=2MK\Leftrightarrow M{{A}^{2}}=4M{{K}^{2}}\Leftrightarrow {{\left( \overrightarrow{MI}+\overrightarrow{IA} \right)}^{2}}=4{{\left( \overrightarrow{MI}+\overrightarrow{IK} \right)}^{2}} \)

\( \Leftrightarrow M{{I}^{2}}+I{{A}^{2}}+2\overrightarrow{MI}.\overrightarrow{IA}=4\left( M{{I}^{2}}+I{{K}^{2}}+2\overrightarrow{MI}.\overrightarrow{IK} \right)\Leftrightarrow 2\overrightarrow{MI}\left( \overrightarrow{IA}-4\overrightarrow{IK} \right)=3{{R}^{2}}+4I{{K}^{2}}-I{{A}^{2}} \)  (*)

(*) luôn đúng \( \forall M\in (C)\Leftrightarrow \left\{ \begin{align}& \overrightarrow{IA}-4\overrightarrow{IK}=\vec{0} \\& 3{{R}^{2}}+4I{{K}^{2}}-I{{A}^{2}}=0 \\\end{align} \right. \).

\( \overrightarrow{IA}-4\overrightarrow{IK}=\vec{0}\Leftrightarrow \left\{ \begin{align}& 4(x-3)=-4 \\  & 4(y-2)=0 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & x=2 \\  & y=2 \\ \end{align} \right. \).

Thử trực tiếp ta thấy K(2;2) thỏa mãn  \( 3{{R}^{2}}+4I{{K}^{2}}-I{{A}^{2}}=0 \).

Vì  \( B{{I}^{2}}={{1}^{2}}+{{3}^{2}}=10>{{R}^{2}}=4 \) nên B nằm ngoài (C).

Vì  \( K{{I}^{2}}=1<{{R}^{2}}=4 \) nên K nằm trong (C).

Ta có:  \( MA+2MB=2MK+2MB=2(MK+MB)\ge 2KB \).

Dấu “=” trong bất đẳng thức trên xảy ra khi và chỉ khi M thuộc đoạn thẳng BK.

Do đó  \( {{\left( MA+2MB \right)}_{\min }}\Leftrightarrow M=(C)\cap BK \).

Phương trình đường thẳng  \( BK:x=2 \).

Phương trình đường tròn  \( (C):{{(x-3)}^{2}}+{{(y-2)}^{2}}=4 \).

Tọa độ điểm M là nghiệm của hệ:  \( \left\{ \begin{align} & x=2 \\  & {{(x-3)}^{2}}+{{(y-2)}^{2}}=4 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align} & x=2 \\  & y=2+\sqrt{3} \\ \end{align} \right. \) \( \vee \left\{ \begin{align}  & x=2 \\  & y=2-\sqrt{3} \\ \end{align} \right. \).

Thử lại thấy  \( M\left( 2;2+\sqrt{3} \right)\in BK \).

Vậy  \( a=2,\text{ }b=2+\sqrt{3}\Rightarrow a+b=4+\sqrt{3} \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Cho các số phức w, z thỏa mãn \( \left| w+i \right|=\frac{3\sqrt{5}}{5} \) và \( 5w=(2+i)(z-4) \). Giá trị lớn nhất của biểu thức \( P=\left| z-1-2i \right|+\left| z-5-2i \right| \) bằng

Cho các số phức w, z thỏa mãn \( \left| w+i \right|=\frac{3\sqrt{5}}{5} \) và  \( 5w=(2+i)(z-4) \). Giá trị lớn nhất của biểu thức  \( P=\left| z-1-2i \right|+\left| z-5-2i \right| \) bằng

A. \( 6\sqrt{7} \)

B.  \( 4+2\sqrt{13} \)                

C.  \( 2\sqrt{53} \)           

D.  \( 4\sqrt{13} \)

Hướng dẫn giải:

Chọn C

Gọi  \( z=x+yi\text{ }(x,y\in \mathbb{R}) \). Khi đó M(x;y) là điểm biểu diễn cho số phức z.

Theo giả thiết,  \( 5w=(2+i)(z-4)\Leftrightarrow 5(w+i)=(2+i)(z-4)+5i \)

\( \Leftrightarrow (2-i)(w+i)=z-3+2i\Leftrightarrow \left| z-3+2i \right|=3 \).

Suy ra M(x;y) thuộc đường tròn  \( (C):{{(x-3)}^{2}}+{{(y+2)}^{2}}=9 \).

Ta có:  \( P=\left| z-1-2i \right|+\left| z-5-2i \right|=MA+MB \), với A(1;2) và B(5:2).

Gọi H là trung điểm của AB, ta có H(3;2) và khi đó:

\( P=MA+MB\le \sqrt{2(M{{A}^{2}}+M{{B}^{2}})} \) hay  \( P\le \sqrt{4M{{H}^{2}}+A{{B}^{2}}} \).

Mặt khác,  \( MH\le KH \) với  \( M\in (C) \) nên  \( P\le \sqrt{4K{{H}^{2}}+A{{B}^{2}}}=\sqrt{4{{(IH+R)}^{2}}+A{{B}^{2}}}=2\sqrt{53} \).

Vậy  \( {{P}_{\max }}=2\sqrt{53}\) khi  \(\left\{ \begin{align}  & M\equiv K \\  & MA=MB \\\end{align} \right. \) hay  \( z=3-5i \) và  \( w=\frac{3}{5}-\frac{11}{5}I \).

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Hệ Thống Trung Tâm Nhân Tài Việt!

Cho số phức z thỏa |z|=1. Gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P=∣z^5+z¯^3+6z∣−2∣z^4+1∣. Tính M−m

Cho số phức z thỏa \( \left| z \right|=1 \). Gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của biểu thức  \( P=\left| {{z}^{5}}+{{{\bar{z}}}^{3}}+6z \right|-2\left| {{z}^{4}}+1 \right| \). Tính  \( M-m \).

A. \( M-m=1 \)

B.  \( M-m=2 \)                

C.  \( M-m=3 \)                

D.  \( M-m=4 \)

Hướng dẫn giải:

Chọn A

Vì  \( \left| z \right|=1 \) và  \( z.\bar{z}={{\left| z \right|}^{2}} \) nên ta có:  \( \bar{z}=\frac{1}{z} \).

Cách 1:

Từ đó:  \( P=\left| {{z}^{5}}+{{{\bar{z}}}^{3}}+6z \right|-2\left| {{z}^{4}}+1 \right|=\left| z \right|\left| {{z}^{4}}+{{{\bar{z}}}^{4}}+6 \right|-2\left| {{z}^{4}}+1 \right|=\left| {{z}^{4}}+{{{\bar{z}}}^{4}}+6 \right|-2\left| {{z}^{4}}+1 \right| \).

Đặt  \( {{z}^{4}}=x+iy\text{ }(x,y\in \mathbb{R}) \). Do  \( \left| z \right|=1 \) nên  \( \left| {{z}^{4}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}=1 \) và  \( -1\le x,y\le 1 \).

Khi đó:  \( P=\left| x+iy+x-iy+6 \right|-2\left| x+iy+1 \right|=\left| 2x+6 \right|-2\sqrt{{{(x+1)}^{2}}+{{y}^{2}}} \)

\( =2x+6-2\sqrt{2x+2}={{\left( \sqrt{2x+2}-1 \right)}^{2}}+3 \).

Do đó:  \( P\ge 3 \). Lại có  \( -1\le x\le 1\Rightarrow 0\le \sqrt{2x+2}\le 2\Rightarrow -1\le \sqrt{2x+2}-1\le 1\Rightarrow P\le 4 \).

Vậy  \( M=4 \) khi  \( {{z}^{4}}=\pm 1 \) và  \( m=3 \) khi  \( {{z}^{4}}=-\frac{1}{2}\pm \frac{\sqrt{3}}{2}I \).

Suy ra  \( M-m=1 \).

Cách 2:

Suy ra:  \( P=\left| {{z}^{5}}+\frac{1}{{{z}^{3}}}+6z \right|-2\left| {{z}^{4}}+1 \right|=\frac{1}{{{\left| z \right|}^{3}}}\left| {{z}^{8}}+1+6{{z}^{4}} \right|-2\left| {{z}^{4}}+1 \right|=\left| {{z}^{8}}+6{{z}^{4}}+1 \right|-2\left| {{z}^{4}}+1 \right| \).

Đặt  \( w={{z}^{4}}\Rightarrow \left| w \right|=1 \), ta được  \( P=\left| {{w}^{2}}+6w+1 \right|-\left| 2w+2 \right| \).

Gọi  \( w=x+yi \), vì  \( \left| w \right|=1\Leftrightarrow {{x}^{2}}+{{y}^{2}}=1\Rightarrow \left\{ \begin{align}  & \left| x \right|\le 1 \\  & \left| y \right|\le 1 \\ \end{align} \right. \).

\( P=\left| {{x}^{2}}+6x+1-{{y}^{2}}+2y(x+3)i \right|-2\left| x+1+yi \right|=\left| 2{{x}^{2}}+6x+2y(x+3)i \right|-2\left| x+1+yi \right| \)

\( =2\left| (x+3)(x+yi) \right|-2\sqrt{{{(x+1)}^{2}}+{{y}^{2}}}=2\left| (x+3) \right|\left| x+yi \right|-2\sqrt{2x+2}=2(x+3)-2\sqrt{2x+2} \).

Xét hàm số  \( f(x)=2(x+3)-2\sqrt{2x+2} \) trên đoạn  \( \left[ -1;1 \right] \).

\( {f}'(x)=2-2.\frac{1}{\sqrt{2x+2}};{f}'(x)=0\Leftrightarrow 2-2.\frac{1}{\sqrt{2x+2}}=0\Leftrightarrow \sqrt{2x+2}=1\Leftrightarrow x=-\frac{1}{2} \).

Ta có: \(f(-1)=4;\text{ }f\left( -\frac{1}{2} \right)=3;\text{ }f(1)=4\).

Vậy  \( M=4,\text{ }m=3\Rightarrow M-m=1 \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Cho hai số phức z, w thỏa mãn \( \left\{ \begin{align}  & \left| z-3-2i \right|\le 1 \\  & \left| w+1+2i \right|\le \left| w-2-i \right| \\ \end{align} \right. \). Tìm giá trị nhỏ nhất của biểu thức \( P=\left| z-w \right| \)

Cho hai số phức z, w thỏa mãn \( \left\{ \begin{align}  & \left| z-3-2i \right|\le 1 \\  & \left| w+1+2i \right|\le \left| w-2-i \right| \\ \end{align} \right. \). Tìm giá trị nhỏ nhất của biểu thức  \( P=\left| z-w \right| \).

A. \( {{P}_{\min }}=\frac{3\sqrt{2}-2}{2} \)

B.  \( {{P}_{\min }}=\sqrt{2}+1 \)             

C.  \( {{P}_{\min }}=\frac{5\sqrt{2}-2}{2} \)                                       

D.  \( {{P}_{\min }}=\frac{3\sqrt{2}+2}{2} \)

Hướng dẫn giải:

Chọn C

Giả sử  \( z=a+bi\text{ }(a,b\in \mathbb{R}),\text{ }w=x+yi\text{ }(x,y\in \mathbb{R}) \).

\( \left| z-3-2i \right|\le 1\Leftrightarrow {{(a-3)}^{2}}+{{(b-2)}^{2}}\le 1 \)  (1)

\( \left| w+1+2i \right|\le \left| w-2-i \right|\Leftrightarrow {{(x+1)}^{2}}+{{(y+2)}^{2}}\le {{(x-2)}^{2}}+{{(y-1)}^{2}} \)

Suy ra  \( x+y=0 \).

\( P=\left| z-w \right|=\sqrt{{{(a-x)}^{2}}+{{(b-y)}^{2}}}=\sqrt{{{(a-x)}^{2}}+{{(b+x)}^{2}}} \).

Từ (1) ta có I(3;2), bán kính r = 1. Gọi H là hình chiếu của I trên  \( d:y=-x \).

Đường thẳng HI có phương trình tham số:  \( \left\{ \begin{align}  & x=3+t \\  & y=2+t \\ \end{align} \right. \).

\( M\in HI\Rightarrow M(3+t;2+t) \).

\( M\in (C)\Leftrightarrow 2{{t}^{2}}=1\Leftrightarrow \left[ \begin{align}  & t=\frac{1}{\sqrt{2}} \\  & t=-\frac{1}{\sqrt{2}} \\ \end{align} \right. \).

\( t=2\Rightarrow M\left( 3+\frac{1}{\sqrt{2}};2+\frac{1}{\sqrt{2}} \right),\text{ }MH=\frac{5+\sqrt{2}}{\sqrt{2}} \).

\( t=3\Rightarrow M\left( 3-\frac{1}{\sqrt{2}};2-\frac{1}{\sqrt{2}} \right),\text{ }MH=\frac{5-\sqrt{2}}{\sqrt{2}} \).

Vậy  \( {{P}_{\min }}=\frac{5\sqrt{2}-2}{2} \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Cho số phức z1, z2 thỏa mãn |z1+1−i|=2 và z2=iz1. Tìm giá trị nhỏ nhất m của biểu thức |z1−z2|

Cho số phức z1, z2 thỏa mãn \( \left| {{z}_{1}}+1-i \right|=2 \) và  \( {{z}_{2}}=i{{z}_{1}} \). Tìm giá trị nhỏ nhất m của biểu thức  \( \left| {{z}_{1}}-{{z}_{2}} \right| \)?

A. \( m=\sqrt{2}-1 \)

B.  \( m=2\sqrt{2} \)        

C.  \( m=2 \)                     

D.  \( m=2\sqrt{2}-2 \)

Hướng dẫn giải:

Chọn D

Đặt  \( {{z}_{1}}=a+bi,\text{ }a,b\in \mathbb{R}\Rightarrow {{z}_{2}}=-b+ai \).

\( \Rightarrow {{z}_{1}}-{{z}_{2}}=(a+b)+(b-a)I \).

Nên \(\left| {{z}_{1}}-{{z}_{2}} \right|=\sqrt{{{(a+b)}^{2}}+{{(b-a)}^{2}}}=2\left| {{z}_{1}} \right|\).

Ta lại có  \( 2=\left| {{z}_{1}}+1-i \right|\le \left| {{z}_{1}} \right|+\left| 1-i \right|=\left| {{z}_{1}} \right|+\sqrt{2} \).

\( \Rightarrow \left| {{z}_{1}} \right|\ge 2-\sqrt{2} \). Suy ra:  \( \left| {{z}_{1}}-{{z}_{2}} \right|=\sqrt{2}.\left| {{z}_{1}} \right|\ge 2\sqrt{2}-2 \).

Dấu “=” xảy ra khi  \( \frac{a}{1}=\frac{b}{-1}<0 \).

Vậy  \( m={{\left| {{z}_{1}}-{{z}_{2}} \right|}_{\min }}=2\sqrt{2}-2 \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Cho số phức z thỏa mãn |z−3−4i|=√5. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=|z+2|^2−|z−i|^2. Môđun của số phức w=M+mi là

Cho số phức z thỏa mãn \( \left| z-3-4i \right|=\sqrt{5} \). Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức  \( P={{\left| z+2 \right|}^{2}}-{{\left| z-i \right|}^{2}} \). Môđun của số phức  \( w=M+mi \) là

A. \(\left| w \right|=3\sqrt{137}\)

B. \(\left| w \right|=\sqrt{1258}\)

C. \(\left| w \right|=2\sqrt{309}\)              

D. \(\left| w \right|=2\sqrt{314}\)

Hướng dẫn giải:

Chọn B

Đặt  \( z=x+yi,\text{ }x,y\in \mathbb{R} \).

Ta có:  \( \left| z-3-4i \right|=\sqrt{5}\Leftrightarrow \left| (x-3)+(y-4)i \right|=\sqrt{5}\Leftrightarrow {{(x-3)}^{2}}+{{(y-4)}^{2}}=5 \) hay tập hợp các điểm biểu diễn số phức z là đường tròn (C) có tâm I(3;4), bán kính  \( r=\sqrt{5} \).

+ Khi đó:  \( P={{\left| z+2 \right|}^{2}}-{{\left| z-i \right|}^{2}}={{(x+2)}^{2}}+{{y}^{2}}-{{x}^{2}}-{{(y-1)}^{2}}=4x+2y+3 \)

\( \Rightarrow 4x+2y+3-P=0 \), kí hiệu là đường thẳng  \( \Delta \) .

+ Số phức z tồn tại khi và chỉ khi đường thẳng  \( \Delta \)  cắt đường tròn (C)

\( \Leftrightarrow d\left( I,\Delta  \right)\le r\Leftrightarrow \frac{\left| 23-P \right|}{2\sqrt{5}}\le \sqrt{5}\Leftrightarrow \left| P-23 \right|\le 10\Leftrightarrow 13\le P\le 33 \).

Suy ra  \( M=33 \) và  \( m=13 \) \( \Rightarrow w=33+13i \).

Vậy  \( \left| w \right|=\sqrt{1258} \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Xét số phức z thỏa mãn |z−2−2i|=2. Giá trị nhỏ nhất của biểu thức P=|z−1−i|+|z−5−2i| bằng

Xét số phức z thỏa mãn \( \left| z-2-2i \right|=2 \). Giá trị nhỏ nhất của biểu thức  \( P=\left| z-1-i \right|+\left| z-5-2i \right| \) bằng

A. \( 1+\sqrt{10} \)

B. 4                                   

C.  \( \sqrt{17} \)              

D. 5

Hướng dẫn giải:

Chọn C

Gọi M(x;y) là điểm biểu diễn số phức z. Do  \( \left| z-2-2i \right|=2 \) nên tập hợp điểm M là đường tròn  \( (C):{{(x-2)}^{2}}+{{(y-2)}^{2}}=4 \).

Các điểm A(1;1), B(5;2) là điểm biểu diễn các số phức  \( 1+I \) và  \( 5+2i \). Khi đó,  \( P=MA+MB \).

Nhận thấy, điểm A nằm trong đường tròn (C) còn điểm B nằm ngoài đường tròn (C), mà  \( MA+MB\ge AB=\sqrt{17} \).

Đẳng thức xảy ra khi M là giao điểm của đoạn AB với (C).

Ta có, phương trình đường thẳng  \( AB:x-4y+3=0 \).

Tọa độ giao điểm của đường thẳng AB và đường tròn (C) là nghiệm của hệ với  \( 1<y<5 \).

\( \left\{ \begin{align}  & {{(x-2)}^{2}}+{{(y-2)}^{2}}=4 \\  & x-4y+3=0 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & {{(4y-5)}^{2}}+{{(y-2)}^{2}}=4 \\  & x=4y-3 \\ \end{align} \right. \)

Ta có:  \( {{(4y-5)}^{2}}+{{(y-2)}^{2}}=4\Leftrightarrow 17{{y}^{2}}-44y+25=0\Leftrightarrow \left[ \begin{align}  & y=\frac{22+\sqrt{59}}{17}\text{ }(n) \\  & y=\frac{22-\sqrt{59}}{17}\text{ }(\ell ) \\ \end{align} \right. \).

Vậy  \( {{P}_{\min }}=\sqrt{17} \) khi  \( z=\frac{37+4\sqrt{59}}{17}+\frac{22+\sqrt{59}}{17}I \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Cho số phức z thỏa mãn |z−2i|≤|z−4i| và |z−3−3i|=1. Giá trị lớn nhất của biểu thức P=|z−2| là

Cho số phức z thỏa mãn \( \left| z-2i \right|\le \left| z-4i \right| \) và  \( \left| z-3-3i \right|=1 \). Giá trị lớn nhất của biểu thức  \( P=\left| z-2 \right| \) là

A. \( \sqrt{13}+1 \)

B.  \( \sqrt{10}+1 \)         

C.  \( \sqrt{13} \)              

D.  \( \sqrt{10} \)

Hướng dẫn giải:

Chọn C

Gọi M(x;y) là điểm biểu diễn số phức z ta có:  \( \left| z-2i \right|\le \left| z-4i \right|\Leftrightarrow {{x}^{2}}+{{(y-2)}^{2}}\le {{x}^{2}}+{{(y-4)}^{2}} \)

\( \Leftrightarrow y\le 3;\text{ }\left| z-3-i \right|=1\Leftrightarrow \) điểm M nằm trên đường tròn tâm I(3;3) và bán kính bằng 1. Biểu thức  \( P=\left| z-2 \right|=AM \) trong đó A(2;0), theo hình vẽ thì giá trị lớn nhất của  \( P=\left| z-2 \right| \) đạt được khi M(4;3) nên  \( {{P}_{\max }}=\sqrt{{{(4-2)}^{2}}+{{(3-0)}^{2}}}=\sqrt{13} \).

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Hệ Thống Trung Tâm Nhân Tài Việt!

cho các số phức z1=−2+t, z2=2+I và số phức z thay đổi thỏa mãn |z−z1|^2+|z−z2|^2=16. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z|. Giá trị biểu thức M^2−m^2 bằng

Cho các số phức \( {{z}_{1}}=-2+t,\text{ }{{z}_{2}}=2+I \) và số phức z thay đổi thỏa mãn  \( {{\left| z-{{z}_{1}} \right|}^{2}}+{{\left| z-{{z}_{2}} \right|}^{2}}=16 \). Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của  \( \left| z \right| \). Giá trị biểu thức \({{M}^{2}}-{{m}^{2}}\) bằng

A. 15

B. 7

C. 11                                

D. 8

Hướng dẫn giải:

Chọn D

Giả sử  \( z=x+yi\text{ }(x,y\in \mathbb{R}) \).

Ta có:  \( {{\left| z-{{z}_{1}} \right|}^{2}}+{{\left| z-{{z}_{2}} \right|}^{2}}=16\Leftrightarrow {{\left| x+yi+2-i \right|}^{2}}+{{\left| x+yi-2-i \right|}^{2}}=16\Leftrightarrow {{x}^{2}}+{{(y-1)}^{2}}=4 \).

Suy ra tập hợp điểm biểu diễn của số phức z là đường tròn tâm số phức I(0;1), bán kính  \( R=2 \).

Do đó:  \( m=1,M=3 \).

Vậy  \( {{M}^{2}}-{{m}^{2}}=8 \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Cho z là số phức thỏa mãn |z¯|=|z+2i|. Giá trị nhỏ nhất của |z−1+2i|+|z+1+3i| là

Cho z là số phức thỏa mãn \( \left| {\bar{z}} \right|=\left| z+2i \right| \). Giá trị nhỏ nhất của  \( \left| z-1+2i \right|+\left| z+1+3i \right| \) là

A. \( 5\sqrt{2} \)

B.  \( \sqrt{13} \)                       

C.  \( \sqrt{29} \)              

D.  \( \sqrt{5} \)

Hướng dẫn giải:

Chọn B

Đặt  \( z=a+bi\text{ }(a,b\in \mathbb{R}) \).

Ta có:  \( \left| {\bar{z}} \right|=\left| z+2i \right|\Leftrightarrow \sqrt{{{a}^{2}}+{{b}^{2}}}=\sqrt{{{a}^{2}}+{{(b+2)}^{2}}}\Leftrightarrow 4b+4=0\Leftrightarrow b=-1\Rightarrow z=a-I \).

Xét  \( \left| z-1+2i \right|+\left| z+1+3i \right|=\left| a-1+i \right|+\left| a+1+2i \right|=\sqrt{{{(1-a)}^{2}}+{{1}^{2}}}+\sqrt{{{(1+a)}^{2}}+{{2}^{2}}} \).

Áp dụng bất đẳng thức Minkovsky:

\( \sqrt{{{(1-a)}^{2}}+{{1}^{2}}}+\sqrt{{{(1+a)}^{2}}+{{2}^{2}}}\ge \sqrt{{{(1-a+1+a)}^{2}}+{{(1+2)}^{2}}}=\sqrt{4+9}=\sqrt{13} \).

Suy ra:  \( \left| z-1+2i \right|+\left| z+1+3i \right| \) đạt giá trị nhỏ nhất là  \( \sqrt{13} \) khi  \( 2(1-a)=1+a\Leftrightarrow a=\frac{1}{3} \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Cho hai số phức z1,z2 thỏa mãn |z1+2−i|+|z1−4−7i|=6√2 và |iz^2−1+2i|=1. Tìm giá trị nhỏ nhất của biểu thức T=|z1+z2|

Cho hai số phức \( {{z}_{1}},{{z}_{2}} \) thỏa mãn  \( \left| {{z}_{1}}+2-i \right|+\left| {{z}_{1}}-4-7i \right|=6\sqrt{2} \) và  \( \left| i{{z}_{2}}-1+2i \right|=1 \). Tìm giá trị nhỏ nhất của biểu thức  \( T=\left| {{z}_{1}}+{{z}_{2}} \right| \).

A. \( \sqrt{2}-1 \)

B.  \( \sqrt{2}+1 \)           

C.  \( 2\sqrt{2}+1 \)                  

D.  \( 2\sqrt{2}-1 \)

Hướng dẫn giải:

Chọn D

Gọi M là điểm biểu diễn số phức z1 và A(-2;1), B(4;7) lần lượt là hai điểm biểu diễn hai số phức  \( -2+i,\text{ }4+7i \).

Ta có  \( AB=6\sqrt{2} \). Phương trình đường thẳng AB là  \( d:x-y+3=0 \).

+  \( \left| {{z}_{1}}+2-i \right|+\left| {{z}_{1}}-4-7i \right|=6\sqrt{2}\Leftrightarrow MA+MB=6\sqrt{2}\Leftrightarrow MA+MB=AB \).

Do đó tập hợp các điểm biểu diễn số phức z1 là đoạn thẳng AB.

+  \( \left| i{{z}_{2}}-1+2i \right|=1\Leftrightarrow \left| i{{z}_{2}}-1+2i \right|\left| i \right|=1\Leftrightarrow \left| -{{z}_{2}}-2-i \right|=1 \).

Gọi N là điểm biểu diễn số phức  \( -{{z}_{2}} \) và I(2;1) là điểm biểu diễn số phức  \( 2+I \).

Ta có  \( IN=1 \). Suy ra tập hợp các điểm biểu diễn số phức  \( -{{z}_{2}} \) là đường tròn (C) có phương trình:  \( {{(x-2)}^{2}}+{{(y-1)}^{2}}=1 \).

\( d\left( I,AB \right)=2\sqrt{2}>1 \), suy ra AB không cắt đường tròn.

Gọi K là hình chiếu của I(2;1) lên AB. Dễ thấy K nằm trên đoạn thẳng AB.

Gọi H là giao điểm của đoạn IK với đường tròn (C).

Ta có  \( \left| {{z}_{1}}+{{z}_{2}} \right|=MN\ge KH=d\left( I,AB \right)-R=2\sqrt{2}-1 \).

Suy ra  \( \left| {{z}_{1}}+{{z}_{2}} \right|=2\sqrt{2}-1 \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Trong các số phức z thỏa mãn |z−3−4i|=2 có hai số phức z1,z2 thỏa mãn |z1−z2|=1. Giá trị nhỏ nhất của |z1|^2−|z2|^2 bằng

Trong các số phức z thỏa mãn \( \left| z-3-4i \right|=2 \) có hai số phức  \( {{z}_{1}},{{z}_{2}} \) thỏa mãn  \( \left| {{z}_{1}}-{{z}_{2}} \right|=1 \). Giá trị nhỏ nhất của  \( {{\left| {{z}_{1}} \right|}^{2}}-{{\left| {{z}_{2}} \right|}^{2}} \) bằng

A. -10

B.  \( -4-3\sqrt{5} \)         

C. -5                                 

D.  \( -6-2\sqrt{5} \)

Hướng dẫn giải:

Chọn A

Đặt  \( {{z}_{1}}={{x}_{1}}+{{y}_{1}}i,\text{ }({{x}_{1}},{{y}_{1}}\in \mathbb{R}) \) và  \( {{z}_{2}}={{x}_{2}}+{{y}_{2}}i,\text{ }({{x}_{2}},{{y}_{2}}\in \mathbb{R}) \).

Khi đó:  \( \left\{ \begin{align}  & {{({{x}_{1}}-3)}^{2}}+{{({{y}_{1}}-4)}^{2}}=4 \\  & {{({{x}_{2}}-3)}^{2}}+{{({{y}_{2}}-4)}^{2}}=4 \\ \end{align} \right. \) và  \( {{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}=1 \).

Ta có:  \( {{({{x}_{1}}-3)}^{2}}+{{({{y}_{1}}-4)}^{2}}={{({{x}_{2}}-3)}^{2}}+{{({{y}_{2}}-4)}^{2}}\Leftrightarrow x_{1}^{2}+y_{1}^{2}-\left( x_{2}^{2}+y_{2}^{2} \right)=6({{x}_{1}}-{{x}_{2}})+8({{y}_{1}}-{{y}_{2}}) \).

Suy ra:  \( \left| {{\left| {{z}_{1}} \right|}^{2}}-{{\left| {{z}_{2}} \right|}^{2}} \right|=2\left| 3({{x}_{1}}-{{x}_{2}})+4({{y}_{1}}-{{y}_{2}}) \right|\le 2\sqrt{\left( {{3}^{2}}+{{4}^{2}} \right)\left[ {{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}} \right]}=10 \).

Do đó \(-10\le {{\left| {{z}_{1}} \right|}^{2}}-{{\left| {{z}_{2}} \right|}^{2}}\le 10\).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Giả sử z1, z2 là hai trong các số phức thỏa mãn (z−6)(8+z¯i)là số thực. Biết rằng |z1−z2|=4, giá trị nhỏ nhất của |z1+3z2| bằng

Giả sử z1, z2 là hai trong các số phức thỏa mãn \( (z-6)(8+\bar{z}i) \)là số thực. Biết rằng  \( \left| {{z}_{1}}-{{z}_{2}} \right|=4 \), giá trị nhỏ nhất của  \( \left| {{z}_{1}}+3{{z}_{2}} \right| \) bằng

A. \( 5-\sqrt{21} \)

B.  \( 20-4\sqrt{21} \)      

C.  \( 20-4\sqrt{22} \)      

D.  \( 5-\sqrt{22} \)

Hướng dẫn giải:

Chọn C

Giả sử  \( z=x+yi,\text{ }x,y\in \mathbb{R} \). Gọi A, B lần lượt là điểm biểu diễn cho số phức z1, z­2. Suy ra  \( AB=\left| {{z}_{1}}-{{z}_{2}} \right|=4 \).

+ Ta có:  \( (z-6)(8-\bar{z}i)=\left[ (x-6)+yi \right]\left[ (8-y)-xi \right]=(8x+6y-48)-({{x}^{2}}+{{y}^{2}}-6x-8y)I \). Theo giả thiết  \( (z-6)(8-\bar{z}i) \) là số thực nên ta suy ra  \( {{x}^{2}}+{{y}^{2}}-6x-8y=0 \). Tức là các điểm A, B thuộc đường tròn (C) tâm I(3;4), bán kính R = 5.

+ Xét điểm M thuộc đoạn AB thỏa  \( \overrightarrow{MA}+3\overrightarrow{MB}=\vec{0}\Leftrightarrow \overrightarrow{OA}+3\overrightarrow{OB}=4\overrightarrow{OM} \). Gọi H là trung điểm AB. Ta tính được  \( H{{I}^{2}}={{R}^{2}}-H{{B}^{2}}=21;\text{ }IM=\sqrt{H{{I}^{2}}+H{{M}^{2}}}=\sqrt{22} \), suy ra điểm M thuộc đường tròn (C’) tâm I(3;4), bán kính  \( r=\sqrt{22} \).

+ Ta có:  \( \left| {{z}_{1}}+3{{z}_{2}} \right|=\left| \overrightarrow{OA}+3\overrightarrow{OB} \right|=\left| 4\overrightarrow{OM} \right|=4OM \), do đó  \( \left| {{z}_{1}}+3{{z}_{2}} \right| \) nhỏ nhất khi OM nhỏ nhất.

Ta có  \( O{{M}_{\min }}=O{{M}_{0}}=\left| OI-r \right|=5-\sqrt{22} \).

Vậy  \( {{\left| {{z}_{1}}+3{{z}_{2}} \right|}_{\min }}=4O{{M}_{0}}=20-4\sqrt{22} \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Cho số phức z có |z|=1. Tìm giá trị lớn nhất của biểu thức P=∣z^2−z∣+∣z^2+z+1∣

Cho số phức z có \( \left| z \right|=1 \). Tìm giá trị lớn nhất của biểu thức  \( P=\left| {{z}^{2}}-z \right|+\left| {{z}^{2}}+z+1 \right| \).

A. \( \frac{13}{4} \)                                           

B. 3             

C.  \( \sqrt{3} \)  

D.  \( \frac{11}{4} \)

Hướng dẫn giải:

Chọn A

\( P=\left| {{z}^{2}}-z \right|+\left| {{z}^{2}}+z+1 \right|=\left| z \right|\left| z-1 \right|+\left| {{z}^{2}}+z+1 \right|=\left| z-1 \right|+\left| {{z}^{2}}+z+1 \right| \).

Do  \( \left| z \right|=1 \) nên  \( z=\cos x+i.\sin x \). Khi đó:

\( P=\left| z-1 \right|+\left| {{z}^{2}}+z+1 \right|=\left| \cos x+i.\sin x-1 \right|+\left| \cos 2x+i\sin 2x+\cos x+i\sin x+1 \right| \)

\(=\sqrt{{{(\cos x-1)}^{2}}+{{\sin }^{2}}x}+\sqrt{{{(\cos 2x+\cos x+1)}^{2}}+{{(\sin 2x+\sin x)}^{2}}}\)

\( =\sqrt{2-2\cos x}+\sqrt{3+4\cos x+2\cos 2x}=\sqrt{2-2\cos x}+\sqrt{4{{\cos }^{2}}x+4\cos x+1} \)

\( =\sqrt{2-2\cos x}+\left| 2\cos x+1 \right| \).

Đặt  \( t=\cos x,t\in [-1;1] \). Xét hàm số  \( y=\sqrt{2-2t}+\left| 2t+1 \right| \).

+ Với  \( t\ge -\frac{1}{2} \) thì  \( y=\sqrt{2-2t}+2t+1,\text{ }{y}’=\frac{-1}{\sqrt{2-2t}}+2 \).

\( {y}’=0\Leftrightarrow \frac{-1}{\sqrt{2-2t}}+2=0\Leftrightarrow t=\frac{7}{8} \).

\( y(1)=3;\text{ }y\left( \frac{7}{8} \right)=\frac{13}{4};\text{ }y\left( -\frac{1}{2} \right)=\sqrt{3} \).

+ Với  \( t<-\frac{1}{2} thì y=\sqrt{2-2t}-2t-1,\text{ }{y}’=\frac{-1}{\sqrt{2-2t}}-2 \)

\( {y}’=0\Leftrightarrow \frac{-1}{\sqrt{2-2t}}-2=0\Leftrightarrow \sqrt{2-2t}=-\frac{1}{2} \) (phương trình vô nghiệm)

\( y(-1)=3,y\left( -\frac{1}{2} \right)=\sqrt{3} \).

Vậy  \( \underset{[-1;1]}{\mathop{Max}}\,y=\frac{13}{4} \). Do đó giá trị lớn nhất của  \( P=\left| {{z}^{2}}-z \right|+\left| {{z}^{2}}+z+1 \right| \) là  \( \frac{13}{4} \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Cho số phức z thỏa mãn |z+z¯|+2|z−z¯|=8. Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức P=|z−3−3i|. Tính M+m

Cho số phức z thỏa mãn \( \left| z+\bar{z} \right|+2\left| z-\bar{z} \right|=8 \). Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức  \( P=\left| z-3-3i \right| \). Tính  \( M+m \).

A. \( \sqrt{10}+\sqrt{34} \)

B.  \( 2\sqrt{10} \)            

C.  \( \sqrt{10}+\sqrt{58} \)     

D.  \( \sqrt{5}+\sqrt{58} \)

Hướng dẫn giải:

Chọn D.

Gọi  \( z=x+yi,\text{ }x,y\in \mathbb{R} \), ta có:  \( \left| z+\bar{z} \right|+2\left| z-\bar{z} \right|=8\Leftrightarrow \left| x \right|+2\left| y \right|=4\Rightarrow \left\{ \begin{align}  & \left| x \right|\le 4 \\  & \left| y \right|\le 2 \\ \end{align} \right. \), tập hợp K(x;y) biểu diễn số phức z thuộc cạnh các cạnh của trong hình thoi ABCD như hình vẽ.

\( P=\left| z-3-3i \right| \) đạt giá trị lớn nhất khi KM lớn nhất, theo hình vẽ ta có KM lớn nhất khi  \( K\equiv D \) hay K(-4;0) suy ra  \( M=\sqrt{49+9}=\sqrt{58} \).

\( P=\left| z-3-3i \right| \) đạt giá trị nhỏ nhất khi KM nhỏ nhất, theo hình vẽ ta có KM nhỏ nhất khi  \( K\equiv F \) (F là hình chiếu của E trên AB).

Suy ra F(2;1) do AE = AB nên F là trung điểm aB.

Suy ra  \( m=\sqrt{1+4}=\sqrt{5} \).

Vậy  \( M+m=\sqrt{58}+\sqrt{5} \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Gọi z=a+bi (a,b∈R) là số phức thỏa mãn điều kiện |z−1−2i|+|z+2−3i|=√10 và có môđun nhỏ nhất. Tính S=7a+b

Gọi \( z=a+bi\text{ }(a,b\in \mathbb{R}) \) là số phức thỏa mãn điều kiện  \( \left| z-1-2i \right|+\left| z+2-3i \right|=\sqrt{10} \) và có môđun nhỏ nhất. Tính  \( S=7a+b \)?

A. 7

B. 0

C. 5                                   

D. -12

Hướng dẫn giải:

Chọn A

Gọi M(a;b) là điểm biểu diễn số phức  \( z=a+bi \).

A(1;2) là điểm biểu diễn số phức  \( (1+2i) \).

B(-2;3) là điểm biểu diễn số phức  \( (-2+3i),\text{ }AB=\sqrt{10} \).

\( \left| z-1-2i \right|+\left| z+2-3i \right|=\sqrt{10} \) trở thành  \( MA+MB=AB \)  \( \Leftrightarrow M,A,B \) thẳng hàng và M ở giữa A và B.

Gọi H là điểm chiếu của O lên AB, phương trình  \( (AB):x+3y-7=0 \),  \( (OH):3x-y=0 \).

Tọa độ điểm  \( H\left( \frac{7}{10};\frac{21}{10} \right) \). Có  \( \overrightarrow{AH}=\left( -\frac{3}{10};\frac{1}{10} \right),\text{ }\overrightarrow{BH}=\left( \frac{27}{10};-\frac{9}{10} \right) \) và  \( \overrightarrow{BH}=-9\overrightarrow{AH} \) nên H thuộc đoạn AB.

\( {{\left| z \right|}_{\min }}\Leftrightarrow O{{M}_{\min }} \), mà  \( M\in AB\Leftrightarrow M\equiv H\left( \frac{7}{10};\frac{21}{10} \right) \).

Lúc đó  \( S=7a+b=\frac{49}{10}+\frac{21}{10}=7 \).