Cho phương trình: (4−6m)sin3x+3(2m−1)sinx+2(m−2)sin2xcosx−(4m−3)cosx=0

Cho phương trình: \( (4-6m){{\sin }^{3}}x+3(2m-1)\sin x+2(m-2){{\sin }^{2}}x\cos x-(4m-3)\cos x=0 \)  (*)

a) Giải phương trình khi \( m=2 \).

b) Tìm m để phương trình (*) có duy nhất một nghiệm trên \( \left[ 0;\frac{\pi }{4} \right] \).

Hướng dẫn giải:

+ Xét  \( x=\frac{\pi }{2}+k\pi \)  thì  \( \cos x=0 \) và  \( \sin x=\pm 1 \) nên

(*) thành:  \( \pm (4-6m)\pm 3(2m-1)=0\Leftrightarrow 1=0 \): vô nghiệm.

+ Chia hai vế phương trình (*) cho  \( {{\cos }^{3}}x\ne 0 \) thì:

(*) \( \Leftrightarrow (4-6m){{\tan }^{3}}x+3(2m-1)\tan x(1+{{\tan }^{2}}x)+2(m-2){{\tan }^{2}}x-(4m-3)(1+{{\tan }^{2}}x)=0 \)

 \( \Leftrightarrow \left\{ \begin{align}  & t=\tan x \\ & {{t}^{3}}-(2m+1){{t}^{2}}+3(2m-1)t-4m+3=0\begin{matrix}  {} & (**)  \\\end{matrix} \\ \end{align} \right. \)

 \( \Leftrightarrow \left\{ \begin{align}  & t=\tan x \\  & (t-1)({{t}^{2}}-2mt+4m-3)=0 \\ \end{align} \right. \).

a) Khi \( m=2 \) thì (*) thành: \( \left\{ \begin{align}  & t=\tan x \\  & (t-1)({{t}^{2}}-4t+5)=0 \\ \end{align} \right. \)

 \( \Leftrightarrow \tan x=1\Leftrightarrow x=\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

b) Ta có: \( x\in \left[ 0;\frac{\pi }{4} \right] \) thì \( \tan x=t\in [0;1] \).

Xét phương trình:  \( {{t}^{2}}-2mt+4m-3=0 \)  (2)

 \( \Leftrightarrow {{t}^{2}}-3=2m(t-2)\Leftrightarrow \frac{{{t}^{2}}-3}{t-2}=2m \) (do  \( t=2 \) không là nghiệm)

Đặt  \( y=f(t)=\frac{{{t}^{2}}-3}{t-2} \)  (C) và  \( (d):y=2m \).

Ta có:  \( {y}’=f(t)=\frac{{{t}^{2}}-4t+3}{{{(t-2)}^{2}}} \).

Do (**) luôn có nghiệm  \( t=1\in [0;1] \) trên yêu cầu bài toán

 \( \Leftrightarrow \left[ \begin{align}  & (d):y=2m\text{ không có nghiệm chung với }(C) \\  & (d)\text{ cắt  }(C)\text{ tại 1 điểm duy nhất }t=1 \\ \end{align} \right. \) \( \Leftrightarrow 2m<\frac{3}{2}\vee 2m\ge 2\Leftrightarrow m<\frac{3}{4}\vee m\ge 1 \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: tanxsin2x−2sin2x=3(cos2x+sinxcosx)

Giải phương trình: \( \tan x{{\sin }^{2}}x-2{{\sin }^{2}}x=3(\cos 2x+\sin x\cos x) \)  (*)

Hướng dẫn giải:

Điều kiện:  \( \cos x\ne 0 \).

Chia hai vế của phương trình (*) cho  \( {{\cos }^{2}}x\ne 0 \):

(*) \( \Leftrightarrow {{\tan }^{3}}x-2{{\tan }^{2}}x=\frac{3({{\cos }^{2}}x-{{\sin }^{2}}x+\sin x\cos x)}{{{\cos }^{2}}x} \)

 \( \Leftrightarrow {{\tan }^{3}}x-2ta{{n}^{2}}x=3(1-{{\tan }^{2}}x+\tan x)\Leftrightarrow {{\tan }^{3}}x+ta{{n}^{2}}x-3tanx-3=0 \)

\(\Leftrightarrow \left\{ \begin{align}  & t=\tan x \\  & {{t}^{3}}+{{t}^{2}}-3t-3=0 \\ \end{align} \right.\)\(\Leftrightarrow \left\{ \begin{align}  & t=\tan x \\  & (t+1)({{t}^{2}}-3)=0 \\ \end{align} \right.\)

 \( \Leftrightarrow \left[ \begin{align}  & \tan x=-1 \\  & \tan x=\pm \sqrt{3} \\ \end{align} \right. \)  \( \Leftrightarrow \left[ \begin{align}  & x=-\frac{\pi }{4}+k\pi  \\  & x=\pm \frac{\pi }{3}+k\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: sinx−4sin3x+cosx=0

Giải phương trình: \( \sin x-4{{\sin }^{3}}x+\cos x=0 \)   (*)

Hướng dẫn giải:

Vì  \( \cos x=0 \) không là nghiệm nên chia hai vế phương trình cho  \( {{\cos }^{3}}x\ne 0 \) thì

(*) \( \Leftrightarrow \tan x(1+{{\tan }^{2}}x)-4{{\tan }^{3}}x+1+{{\tan }^{2}}x=0 \)

 \( \Leftrightarrow \left\{ \begin{align}  & t=\tan x \\  & -3{{t}^{3}}+{{t}^{2}}+t+1=0 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & t=\tan x \\  & (t-1)(3{{t}^{2}}+2t+1)=0 \\ \end{align} \right.\Leftrightarrow \tan x=1 \)

 \( x=\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: 6sinx−2cos3x=5sin4x.cosx/2cos2x

Giải phương trình: \( 6\sin x-2{{\cos }^{3}}x=\frac{5\sin 4x.\cos x}{2\cos 2x} \)   (*)

Hướng dẫn giải:

Điều kiện:  \( \cos 2x\ne 0\Leftrightarrow {{\cos }^{2}}x-si{{n}^{2}}x\ne 0\Leftrightarrow \tan x\ne \pm 1 \).

Ta có: (*) \( \Leftrightarrow 6\sin x-2{{\cos }^{3}}x=\frac{10\sin 2x\cos 2x\cos x}{2\cos 2x}\Leftrightarrow 6\sin x-2{{\cos }^{3}}x=5\sin 2x\cos x \)

 \( \Leftrightarrow 6\sin x-2{{\cos }^{3}}x=10\sin x{{\cos }^{2}}x \)   (**)

Do  \( \cos x=0 \) không là nghiệm của (**), chia hai vế phương trình (**) cho  \( {{\cos }^{3}}x\ne 0 \) ta được:

(**) \( \Leftrightarrow \frac{6\tan x}{{{\cos }^{2}}x}-2=10\tan x \)

 \( \Leftrightarrow \left\{ \begin{align}  & t=\tan x,\text{ }t\ne \pm 1 \\  & 6t(1+{{t}^{2}})-2=10t \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & t=\tan x,\text{ }t\ne \pm 1 \\  & 3{{t}^{3}}-2t-1=0 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & t=\tan x,\text{ }t\ne \pm 1 \\  & (t-1)(3{{t}^{2}}+3t+1)=0 \\ \end{align} \right. \)

 \( \Leftrightarrow \left\{ \begin{align}  & t=\tan x,\text{ }t\ne \pm 1 \\  & t=1 \\ \end{align} \right. \): vô nghiệm.

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: sin3x+cos3x+2cosx=0

Giải phương trình: \( \sin 3x+\cos 3x+2\cos x=0 \)  (*)

Hướng dẫn giải:

(*) \( \Leftrightarrow (3\sin x-4{{\sin }^{3}}x)+(4{{\cos }^{3}}x-3\cos x)+2\cos x=0 \)

 \( \Leftrightarrow 3\sin x-4{{\sin }^{3}}x+4{{\cos }^{3}}x-\cos x=0 \)

Vì  \( \cos x=0 \) không là nghiệm nên chia hai vế phương trình cho  \( {{\cos }^{3}}x\ne 0 \) ta được:

(*) \( \Leftrightarrow 3\tan x(1+{{\tan }^{2}}x)-4{{\tan }^{3}}x+4-(1+{{\tan }^{2}}x)=0 \)

 \( \Leftrightarrow -{{\tan }^{3}}x-{{\tan }^{2}}x+3\tan x+3=0\Leftrightarrow \left\{ \begin{align}  & t=\tan x \\  & {{t}^{3}}+{{t}^{2}}-3t-3=0 \\ \end{align} \right. \)

 \( \Leftrightarrow \left\{ \begin{align}  & t=\tan x \\  & (t+1)({{t}^{2}}-3)=0 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & \tan x=-1 \\  & \tan x=\pm \sqrt{3} \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & x=-\frac{\pi }{4}+k\pi  \\  & x=\pm \frac{\pi }{3}+k\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: cotx−1=cos2x/(1+tanx)+sin2x−1/2sin2x

(KA – 2003) Giải phương trình: \( \cot x-1=\frac{\cos 2x}{1+\tan x}+{{\sin }^{2}}x-\frac{1}{2}\sin 2x \)  (*)

Hướng dẫn giải:

Điều kiện:  \( \sin 2x\ne 0 \) và  \( \tan x\ne -1 \).

Ta có:  \( \frac{\cos 2x}{1+\tan x}=\frac{{{\cos }^{2}}x-{{\sin }^{2}}x}{1+\frac{\sin x}{\cos x}}=\frac{\cos x({{\cos }^{2}}x-{{\sin }^{2}}x)}{\cos x+\sin x} \)

 \( =\cos x(\cos x-\sin x) \) (do  \( \tan x=-1 \) nên,  \( \sin x+\cos x\ne 0 \))

Do đó: (*) \( \Leftrightarrow \frac{\cos x}{\sin x}-1=({{\cos }^{2}}x-\sin x\cos x)+{{\sin }^{2}}x-\frac{1}{2}\sin 2x \)

 \( \Leftrightarrow \frac{\cos x-\sin x}{\sin x}=1-\sin 2x\Leftrightarrow \cos x-\sin x=\sin x{{(\cos x-\sin x)}^{2}} \)

 \( \Leftrightarrow (\cos x-\sin x)\left[ 1-\sin x(\cos x-\sin x) \right]=0 \)

\(\Leftrightarrow \left[ \begin{align}  & \cos x-\sin x=0\begin{matrix}   {} & {} & {} & (1)  \\\end{matrix} \\  & 1-\sin x(\cos x-\sin x)=0\begin{matrix}   {} & (2)  \\\end{matrix} \\ \end{align} \right.\).

+ Giải (1) \( \Leftrightarrow \sin x=\cos x\Leftrightarrow \tan x=1\Leftrightarrow x=\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

+ Giải (2): Chia hai vế phương trình (2) cho  \( {{\cos }^{2}}x\ne 0 \) ta được:

 \( \frac{1}{{{\cos }^{2}}x}=\frac{\sin x}{\cos x}-{{\tan }^{2}}x\Leftrightarrow 2{{\tan }^{2}}x-\tan x+1=0 \) (vô nghiệm).

Vậy nghiệm của phương trình (*) là  \( x=\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

Lưu ý: Có thể làm cách khác

(**) \( \Leftrightarrow 1-\frac{1}{2}\sin 2x+\frac{1}{2}(1-\cos 2x)=0\Leftrightarrow 3=\sin 2x+\cos 2x \)

 \( \Leftrightarrow \sqrt{2}\sin \left( 2x+\frac{\pi }{4} \right)=3\Leftrightarrow \sin \left( 2x+\frac{\pi }{4} \right)=\frac{3}{\sqrt{2}} \): vô nghiệm.

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: sinxsin2x+sin3x=6cos3x

Giải phương trình: \( \sin x\sin 2x+\sin 3x=6{{\cos }^{3}}x \)  (*)

Hướng dẫn giải:

(*) \( \Leftrightarrow 2{{\sin }^{2}}xcosx+3sinx-4si{{n}^{3}}x=6co{{s}^{3}}x \)

+ Xét  \( \cos x=0\text{ }(\sin x=\pm 1) \) thì (*) vô nghiệm

+ Chia hai vế phương trình (*) cho  \( {{\cos }^{3}}x\ne 0 \) ta được:

(*) \( \Leftrightarrow \frac{2{{\sin }^{2}}x}{{{\cos }^{2}}x}+\frac{3\sin x}{\cos x}.\frac{1}{{{\cos }^{2}}x}-4.\frac{{{\sin }^{3}}x}{{{\cos }^{3}}x}=6 \)

 \( \Leftrightarrow 2{{\tan }^{2}}x+3\tan x(1+{{\tan }^{2}}x)-4{{\tan }^{3}}x=6 \)

 \( \Leftrightarrow {{\tan }^{3}}x-2{{\tan }^{2}}x-3\tan x+6=0\Leftrightarrow (\tan x-2)({{\tan }^{2}}x-3)=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & \tan x=2 \\  & \tan x=\pm \sqrt{3} \\ \end{align} \right. \)  \( \Leftrightarrow \left[ \begin{align}  & x=\arctan (2)+k\pi  \\  & x=\pm \frac{\pi }{3}+k\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \)

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: sin2x+2tanx=3

Giải phương trình: \( \sin 2x+2\tan x=3 \)  (*)

Hướng dẫn giải:

Điều kiện:  \( \cos x\ne 0 \).

Chia hai vế của (*) cho  \( {{\cos }^{2}}x\ne 0 \) ta được:

(*) \( \Leftrightarrow \frac{2\sin x\cos x}{{{\cos }^{2}}x}+\frac{2\tan x}{{{\cos }^{2}}x}=\frac{3}{{{\cos }^{2}}x} \)

 \( \Leftrightarrow 2\tan x+2\tan x(1+{{\tan }^{2}}x)=3(1+{{\tan }^{2}}x) \)

 \( \Leftrightarrow \left\{ \begin{align}  & t=\tan x \\  & 2{{t}^{3}}-2{{t}^{2}}+4t-3=0 \\ \end{align} \right. \)  \( \Leftrightarrow \left\{ \begin{align} & t=\tan x \\  & (t-1)(2{{t}^{2}}-t+3)=0 \\ \end{align} \right. \)

 \( \Leftrightarrow t=1\Rightarrow \tan x=1\Leftrightarrow x=\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: 3cos4x−4sin2xcos2x+sin4x=0

Giải phương trình: \( 3{{\cos }^{4}}x-4{{\sin }^{2}}xco{{s}^{2}}x+si{{n}^{4}}x=0 \)  (*)

Hướng dẫn giải:

Do  \( \cos x=0 \) không là nghiệm nên chia hai vế của (*) cho  \( {{\cos }^{4}}x\ne 0 \).

Ta có: (*) \( \Leftrightarrow 3-4{{\tan }^{2}}x+{{\tan }^{4}}x=0\Leftrightarrow \left[ \begin{align} & {{\tan }^{2}}x=1 \\  & {{\tan }^{2}}x=3 \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & \tan x=\pm 1=\tan \left( \pm \frac{\pi }{4} \right) \\  & \tan x=\pm \sqrt{3}=\tan \left( \pm \frac{\pi }{3} \right) \\ \end{align} \right. \) \(\Leftrightarrow \left[ \begin{align}  & x=\pm \frac{\pi }{4}+k\pi  \\  & x=\pm \frac{\pi }{3}+k\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z}\).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: cos3x−4sin3x−3cosxsin2x+sinx=0

Giải phương trình: \( {{\cos }^{3}}x-4{{\sin }^{3}}x-3cosxsi{{n}^{2}}x+\sin x=0 \)   (*)

Hướng dẫn giải:

+ Xét  \( x=\frac{\pi }{2}+k\pi \)  thì  \( \cos x=0 \) và  \( \sin x=\pm 1 \) thì (*) vô nghiệm.

+ Do  \( \cos x=0 \) không phải là nghiệm nên chia hai vế của (*) cho  \( {{\cos }^{3}}x\ne 0 \) ta được:

(*) \( \Leftrightarrow 1-4{{\tan }^{3}}x-3{{\tan }^{2}}x+\tan x(1+{{\tan }^{2}}x)=0 \)

 \( \Leftrightarrow 3{{\tan }^{3}}x+3ta{{n}^{2}}x-\tan x-1=0\Leftrightarrow (\tan x+1)(3{{\tan }^{2}}x-1)=0 \)

\(\Leftrightarrow \left[ \begin{align}  & \tan x=-1 \\  & {{\tan }^{2}}x=\frac{1}{3} \\ \end{align} \right.\)\(\Leftrightarrow \left[ \begin{align}  & \tan x=-1 \\  & \tan x=\pm \frac{\sqrt{3}}{3} \\ \end{align} \right.\)\(\Leftrightarrow \left[ \begin{align} & x=-\frac{\pi }{4}+k\pi  \\  & x=\pm \frac{\pi }{6}+k\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z}\).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: cos2x−√3sin2x=1+sin2x

Giải phương trình: \( {{\cos }^{2}}x-\sqrt{3}\sin 2x=1+{{\sin }^{2}}x \)  (*)

Hướng dẫn giải:

Vì  \( \cos x=0 \) không là nghiệm phương trình nên

Chia hai vế của (*) cho  \( {{\cos }^{2}}x\ne 0 \) ta được:

(*) \( 1-2\sqrt{3}\tan x=(1+{{\tan }^{2}}x)+{{\tan }^{2}}x \)

Đặt  \( t=\tan x \) ta có phương trình:  \( 2{{t}^{2}}+2\sqrt{3}t=0\Leftrightarrow \left[ \begin{align}  & t=0 \\  & t=-\sqrt{3} \\ \end{align} \right. \).

 \( \Rightarrow \left[ \begin{align}  & \tan x=0 \\  & \tan x=-\sqrt{3} \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=k\pi  \\  & x=-\frac{\pi }{3}+k\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Cho f(x)=cos^22x+2(sinx+cosx)^3−3sin2x+m

Cho \( f(x)={{\cos }^{2}}2x+2{{(\sin x+\cos x)}^{3}}-3\sin 2x+m \).

a) Giải phương trình \( f(x)=0 \) khi \( m=-3 \).

b) Tính theo m giá trị lớn nhất và giá trị nhỏ nhất của f(x). Tìm m sao cho \( {{[f(x)]}^{2}}\le 36,\text{ }\forall x\in \mathbb{R} \).

Hướng dẫn giải:

Đặt  \( t=\sin x+\cos x=\sqrt{2}\cos \left( x-\frac{\pi }{4} \right) \) (điều kiện  \( \left| t \right|\le \sqrt{2} \))

Thì  \( {{t}^{2}}=1+\sin 2x \) và  \( {{\cos }^{2}}2x=1-si{{n}^{2}}2x=1-{{({{t}^{2}}-1)}^{2}}=-{{t}^{4}}+2{{t}^{2}} \).

Vậy f(x) thành  \( g(t)=-{{t}^{4}}+2{{t}^{2}}+2{{t}^{3}}-3({{t}^{2}}-1)+m \).

a) Khi \( m=-3 \) thì \( g(t)=0 \)

 \( \Leftrightarrow -{{t}^{2}}({{t}^{2}}-2t+1)=0\Leftrightarrow \left[ \begin{align}  & t=0 \\  & t=1 \\ \end{align} \right. \) \( \Rightarrow \left[ \begin{align}  & \sqrt{2}\cos \left( x-\frac{\pi }{4} \right)=0 \\  & \sqrt{2}\cos \left( x-\frac{\pi }{4} \right)=1 \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & \cos \left( x-\frac{\pi }{4} \right)=0 \\  & \cos \left( x-\frac{\pi }{4} \right)=\frac{\sqrt{2}}{2}=\cos \frac{\pi }{4} \\ \end{align} \right. \)\(\Leftrightarrow \left[ \begin{align}  & x-\frac{\pi }{4}=\frac{\pi }{2}+k\pi  \\ & x-\frac{\pi }{4}=\frac{\pi }{4}+k2\pi \vee x-\frac{\pi }{4}=-\frac{\pi }{4}+k2\pi  \\ \end{align} \right.\)

\(\Leftrightarrow \left[ \begin{align}  & x=\frac{3\pi }{4}+k\pi  \\  & x=\frac{\pi }{2}+k2\pi \vee x=k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z}\).

b) Ta có: \( {g}'(t)=-4{{t}^{3}}+6{{t}^{2}}-2t=-2t(2{{t}^{2}}-3t+1) \)

Do đó:  \( \left\{ \begin{align}  & {g}'(t)=0 \\  & t\in \left[ -\sqrt{2};\sqrt{2} \right] \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & t=0 \\  & t=1 \\  & t=\frac{1}{2} \\ \end{align} \right. \).

Ta có:  \( g(0)=3+m=g(1),\text{ }g\left( \frac{1}{2} \right)=\frac{47}{16}+m \)

 \( g(-\sqrt{2})=4\sqrt{2}-3+m,\text{ }g(\sqrt{2})=m-3-4\sqrt{2} \).

Vậy:  \( \underset{x\in \mathbb{R}}{\mathop{max}}\,f(x)=\underset{t\in \left[ -\sqrt{2};\sqrt{2} \right]}{\mathop{max}}\,g(t)=m+3 \).

 \( \underset{x\in \mathbb{R}}{\mathop{\min }}\,f(x)=\underset{t\in \left[ -\sqrt{2};\sqrt{2} \right]}{\mathop{\min }}\,g(t)=m-3-4\sqrt{2} \).

Do đó:  \( {{[f(x)]}^{2}}\le 36,\text{ }\forall x\in \mathbb{R}\Leftrightarrow -6\le f(x)\le 6,\forall x\in \mathbb{R} \)

 \( \Leftrightarrow \left\{ \begin{align}  & \underset{\mathbb{R}}{\mathop{max}}\,f(x)\le 6 \\  & \underset{\mathbb{R}}{\mathop{\min }}\,f(x)\ge -6 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m+3\le 6 \\  & m-3-4\sqrt{2}\ge -6 \\ \end{align} \right.\Leftrightarrow 4\sqrt{2}-3\le m\le 3 \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Cho phương trình: m(sinx+cosx)+1+1/2(tanx+cotx+1/sinx+1/cosx)=0

Cho phương trình: \( m(\sin x+\cos x)+1+\frac{1}{2}\left( \tan x+\cot x+\frac{1}{\sin x}+\frac{1}{\cos x} \right)=0 \) (*)

a) Giải phương trình khi \( m=\frac{1}{2} \).

b) Tìm m để (*) có nghiệm trên \( \left( 0;\frac{\pi }{2} \right) \).

Hướng dẫn giải:

Với điều kiện:  \( \sin 2x\ne 0 \).

Ta có: (*) \( \Leftrightarrow m(\sin x+\cos x)+1+\frac{1}{2}\left( \frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}+\frac{1}{\sin x}+\frac{1}{\cos x} \right)=0 \)

\(\Leftrightarrow m(\sin x+\cos x)+1+\frac{{{\sin }^{2}}x+{{\cos }^{2}}x+\sin x+\cos x}{2\sin x\cos x}=0\)

 \( \Leftrightarrow m\sin 2x(\sin x+\cos x)+\sin 2x+(1+\cos x+\sin x)=0 \)

 \( \Leftrightarrow m\sin 2x(\sin x+\cos x)+{{(\sin x+\cos x)}^{2}}+\sin x+\cos x=0 \)

 \( \Leftrightarrow (\sin x+\cos x)\left[ m\sin 2x+\sin x+\cos x+1 \right]=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & \sin x+\cos x=0\begin{matrix}   {} & {} & {} & (1)  \\\end{matrix} \\  & m\sin 2x+\sin x+\cos x+1=0\begin{matrix}   {} & (2)  \\\end{matrix} \\ \end{align} \right. \).

Xét (2) đặt  \( t=\sin x+\cos x=\sqrt{2}\cos \left( x-\frac{\pi }{4} \right) \) thì  \( {{t}^{2}}=1+\sin 2x \).

Do  \( \sin 2x\ne 0 \) nên  \( \left| t \right|\le \sqrt{2} \) và  \( t\ne \pm 1 \).

Vậy (*) thành:  \( \left[ \begin{align}  & t=0 \\  & m({{t}^{2}}-1)+t+1=0 \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & t=0\text{ }(n) \\  & m(t-1)+1=0\text{ }(do\text{ }t\ne -1) \\ \end{align} \right. \).

a) Khi \( m=\frac{1}{2} \) thì ta được:

\(\left[ \begin{align}  & t=0 \\  & t=-1\text{ }(\ell ) \\ \end{align} \right.\Rightarrow \sin x+\cos x=0\Leftrightarrow \tan x=-1\)

 \( \Leftrightarrow x=-\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

b) Ta có: \( 0<x<\frac{\pi }{2}\Leftrightarrow -\frac{\pi }{4}<x-\frac{\pi }{4}<\frac{\pi }{4} \).

Lúc đó:  \( \frac{\sqrt{2}}{2}<\cos \left( x-\frac{\pi }{4} \right)\le 1\Rightarrow 1<t\le \sqrt{2} \).

Do  \( t=0\notin \left( 1;\sqrt{2} \right] \) nên ta xét phương trình:  \( m(t-1)+1=0 \)  (**)

 \( \Leftrightarrow mt=m-1\Leftrightarrow t=1-\frac{1}{m} \) (do m = 0 thì (**) vô nghiệm)

Do đó: yêu cầu bài toán  \( \Leftrightarrow 1<1-\frac{1}{m}\le \sqrt{2}\Leftrightarrow \left\{ \begin{align}  & -\frac{1}{m}>0 \\ & 1-\sqrt{2}\le \frac{1}{m} \\ \end{align} \right. \)

 \( \Leftrightarrow \left\{ \begin{align}  & m<0 \\  & m\le \frac{1}{1-\sqrt{2}}=-\sqrt{2}-1 \\ \end{align} \right.\Leftrightarrow m\le -\sqrt{2}-1 \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Cho phương trình cos^3x+sin^3x=msinxcosx

Cho phương trình \( {{\cos }^{3}}x+{{\sin }^{3}}x=m\sin x\cos x \)  (*)

a) Giải phương trình khi \( m=\sqrt{2} \).

b) Tìm m để (*) có nghiệm.

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow (\cos x+\sin x)(1-\sin x\cos x)=m\sin x\cos x \).

Đặt  \( t=\sin x+\cos x=\sqrt{2}\cos \left( x-\frac{\pi }{4} \right) \), với điều kiện  \( \left| t \right|\le \sqrt{2} \)

Thì  \( {{t}^{2}}=1+2\sin x\cos x \)

Vậy (*) thành  \( t\left( 1-\frac{{{t}^{2}}-1}{2} \right)=m.\frac{{{t}^{2}}-1}{2}\Leftrightarrow t(3-{{t}^{2}})=m({{t}^{2}}-1) \).

a) Khi \( m=\sqrt{2} \) ta có phương trình: \( t(3-{{t}^{2}})=\sqrt{2}({{t}^{2}}-1) \)

 \( \Leftrightarrow {{t}^{3}}+\sqrt{2}{{t}^{2}}-3t-\sqrt{2}=0\Leftrightarrow \left( t-\sqrt{2} \right)\left( {{t}^{2}}+2\sqrt{2}t+1 \right)=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & t=\sqrt{2}\text{ }(n) \\  & t=-\sqrt{2}+1\text{ }(n) \\  & t=-\sqrt{2}-1\text{ }(\ell ) \\ \end{align} \right. \)

+ Với  \( t=\sqrt{2}\Rightarrow \sqrt{2}\cos \left( x-\frac{\pi }{4} \right)=1\Leftrightarrow \cos \left( x-\frac{\pi }{4} \right)=\frac{\sqrt{2}}{2}=\cos \frac{\pi }{4} \)

 \( \Leftrightarrow \left[ \begin{align}  & x-\frac{\pi }{4}=\frac{\pi }{4}+k2\pi  \\  & x-\frac{\pi }{4}=-\frac{\pi }{4}+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=\frac{\pi }{2}+k2\pi  \\  & x=k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

+ Với  \( t=1-\sqrt{2}\Rightarrow \sqrt{2}\cos \left( x-\frac{\pi }{4} \right)=1-\sqrt{2}\Leftrightarrow \cos \left( x-\frac{\pi }{4} \right)=\frac{1-\sqrt{2}}{\sqrt{2}} \)

 \( \Leftrightarrow \left[ \begin{align} & x-\frac{\pi }{4}=\arccos \left( \frac{1-\sqrt{2}}{\sqrt{2}} \right)+k2\pi  \\  & x-\frac{\pi }{4}=-\arccos \left( \frac{1-\sqrt{2}}{\sqrt{2}} \right)+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=\frac{\pi }{4}+\arccos \left( \frac{1-\sqrt{2}}{\sqrt{2}} \right)+k2\pi  \\  & x=\frac{\pi }{4}-\arccos \left( \frac{1-\sqrt{2}}{\sqrt{2}} \right)+k2\pi  \\ \end{align} \right.,k\in \mathbb{Z} \).

b) Xét phương trình: \( t(3-{{t}^{2}})=m({{t}^{2}}-1) \) (**)

Do  \( t=\pm 1 \) không là nghiệm của (**) nên

(**) \( \Leftrightarrow m=\frac{3t-{{t}^{3}}}{{{t}^{2}}-1} \).

Xét  \( y=\frac{3t-{{t}^{3}}}{{{t}^{2}}-1} \)  (C) trên  \( \left[ -\sqrt{2};\sqrt{2} \right]\backslash \{\pm 1\} \).

Ta có:  \( {y}’=\frac{-{{t}^{4}}-3}{{{({{t}^{2}}-1)}^{2}}}<0,\text{ }\forall t\ne \{\pm 1\} \).

Suy ra y giảm trên  \( (-1;1) \) và  \( \underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,y=+\infty ,\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,y=-\infty \) .

Do đó trên  \( (-1;1)\subset \left[ -\sqrt{2};\sqrt{2} \right]\backslash \{\pm 1\} \), ta có:  \( (d):y=m \) cắt  \( (C):y=\frac{3t-{{t}^{3}}}{{{t}^{2}}-1},\text{ }\forall m\in \mathbb{R} \).

Vậy (*) có nghiệm  \( \forall m\in \mathbb{R} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Cho phương trình m(sinx+cosx+1)=1+sin2x (*). Tìm m để phương trình có nghiệm thuộc đoạn [0;π/2]

Cho phương trình \( m(\sin x+\cos x+1)=1+\sin 2x \)  (*). Tìm m để phương trình có nghiệm thuộc đoạn  \( \left[ 0;\frac{\pi }{2} \right] \).

Hướng dẫn giải:

Đặt  \( t=\sin x+\cos x=\sqrt{2}\sin \left( x+\frac{\pi }{4} \right) \), điều kiện:  \( \left| t \right|\le \sqrt{2} \)

Thì  \( {{t}^{2}}=1+\sin 2x \).

Vậy (*) thành:  \( m(t+1)={{t}^{2}} \).

Nếu  \( 0\le x\le \frac{\pi }{2} \) thì  \( \frac{\pi }{4}\le x+\frac{\pi }{4}\le \frac{3\pi }{4} \).

Do đó:  \( \frac{\sqrt{2}}{2}\le \sin \left( x+\frac{\pi }{4} \right)\le 1\Leftrightarrow 1\le t\le \sqrt{2} \).

Ta có:  \( m(t+1)={{t}^{2}}\Leftrightarrow m=\frac{{{t}^{2}}}{t+1} \) (do  \( t=-1 \) không là nghiệm của phương trình).

Xét  \( y=\frac{{{t}^{2}}}{t+1} \) trên  \( \left[ 1;\sqrt{2} \right] \) thì  \( {y}’=\frac{{{t}^{2}}+2t}{{{(t+1)}^{2}}}>0,\text{ }\forall t\in \left[ 1;\sqrt{2} \right] \).

Do đó, y đồng biến trên  \( \left[ 1;\sqrt{2} \right] \).

Vậy (*) có nghiệm trên  \( \left[ 1;\frac{\pi }{2} \right] \) \( \Leftrightarrow y(1)\le m\le y(\sqrt{2})\Leftrightarrow \frac{1}{2}\le m\le 2\left( \sqrt{2}-1 \right) \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: tan^2x(1−sin^3x)+cos^3x−1=0

Giải phương trình: \( {{\tan }^{2}}x(1-{{\sin }^{3}}x)+{{\cos }^{3}}x-1=0 \)  (*)

Hướng dẫn giải:

Điều kiện:  \( \cos x\ne 0\Leftrightarrow \sin x\ne \pm 1 \).

Lúc đó (*) \( \Leftrightarrow \frac{{{\sin }^{2}}x}{{{\cos }^{2}}x}(1-{{\sin }^{3}}x)+{{\cos }^{3}}x-1=0 \)

 \( \Leftrightarrow (1-{{\cos }^{2}}x)(1-{{\sin }^{3}}x)-(1-{{\cos }^{3}}x)(1-{{\sin }^{2}}x)=0 \)

 \( \Leftrightarrow (1-\cos x)(1+\cos x)(1-{{\sin }^{3}}x)(1+\sin x+{{\sin }^{2}}x) \)

 \( -(1-\cos x)(1+\cos x+{{\cos }^{2}}x)(1-\sin x)(1+\sin x)=0 \)

 \( \Leftrightarrow (1-\cos x)(1-\sin x)\left[ (1+\cos x)(1+\sin x+{{\sin }^{2}}x)-(1+\cos x+{{\cos }^{2}}x)(1+\sin x) \right]=0 \)

\(\Leftrightarrow \left[ \begin{align}  & 1-\cos x=0 \\  & 1-\sin x=0 \\  & (1+\cos x)(1+\sin x+{{\sin }^{2}}x)-(1+\cos x+{{\cos }^{2}}x)(1+\sin x)=0 \\ \end{align} \right.\)

\(\Leftrightarrow \left[ \begin{align}  & \cos x=1\text{ }(n) \\  & \sin x=1\text{ }(\ell ) \\  & 1+\sin x+{{\sin }^{2}}x+\cos x+\cos x.\sin x+\cos x.{{\sin }^{2}}x \\  & -(1+\cos x+{{\cos }^{2}}x+\sin x+\cos x\sin x+{{\cos }^{2}}x\sin x)=0 \\ \end{align} \right.\)

\(\Leftrightarrow \left[ \begin{align}  & \cos x=1\begin{matrix}   {} & {} & {} & {}  \\\end{matrix}(1) \\  & {{\sin }^{2}}x+{{\sin }^{2}}x\cos x-{{\cos }^{2}}x-\sin x{{\cos }^{2}}x=0\begin{matrix}   {} & (2)  \\\end{matrix} \\ \end{align} \right.\).

+ Giải  \( (1)\Leftrightarrow x=k2\pi ,\text{ }k\in \mathbb{Z} \).

+ Giải  \( \Leftrightarrow {{\sin }^{2}}x-co{{s}^{2}}x+\sin x\cos x(\sin x-\cos x)=0 \)

 \( \Leftrightarrow (\sin x-\cos x)(\sin x+\cos x)+\sin x\cos x(\sin x-\cos x)=0 \)

 \( \Leftrightarrow (\sin x-\cos x)(\sin x+\cos x+\sin x\cos x)=0\Leftrightarrow \left[ \begin{align}  & \sin x-\cos x=0\begin{matrix}   {} & {} & {} & {}  \\\end{matrix}(3) \\  & \sin x+\cos x+\sin x\cos x=0\begin{matrix}   {} & (4)  \\\end{matrix} \\ \end{align} \right. \).

Với phương trình  \( (3)\Leftrightarrow \sin x=\cos x\Leftrightarrow \tan x=1\Leftrightarrow x=\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

Với phương trình (4), ta đặt  \( t=\sin x+\cos x=\sqrt{2}\cos x\left( x-\frac{\pi }{4} \right) \) (điều kiện  \( \left| t \right|\le \sqrt{2} \) và  \( t\ne \pm 1 \)).

 \( \Rightarrow {{t}^{2}}=1+2\sin x\cos x \).

Ta được phương trình:  \( t+\frac{{{t}^{2}}-1}{2}=0\Leftrightarrow {{t}^{2}}+2t-1=0\Leftrightarrow \left[ \begin{align}  & t=-1-\sqrt{2}\text{ }(\ell ) \\  & t=-1+\sqrt{2}\text{ }(n) \\ \end{align} \right. \)

Vậy  \( \sqrt{2}\cos \left( x-\frac{\pi }{4} \right)=\sqrt{2}-1\Leftrightarrow \cos \left( x-\frac{\pi }{4} \right)=\frac{\sqrt{2}-1}{\sqrt{2}} \)

 \( \Leftrightarrow \left[ \begin{align}  & x-\frac{\pi }{4}=\arccos \left( \frac{\sqrt{2}-1}{\sqrt{2}} \right)+k2\pi  \\  & x-\frac{\pi }{4}=-\arccos \left( \frac{\sqrt{2}-1}{\sqrt{2}} \right)+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=\frac{\pi }{4}+\arccos \left( \frac{\sqrt{2}-1}{\sqrt{2}} \right)+k2\pi  \\  & x=\frac{\pi }{4}-\arccos \left( \frac{\sqrt{2}-1}{\sqrt{2}} \right)+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: sinx+sin^2x+sin^3x+sin^4x=cosx+cos^2x+cos^3x+cos^4x

Giải phương trình: \( \sin x+{{\sin }^{2}}x+si{{n}^{3}}x+si{{n}^{4}}x=cosx+co{{s}^{2}}x+co{{s}^{3}}x+co{{s}^{4}}x \)  (*)

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow (\sin x-\cos x)+({{\sin }^{2}}x-co{{s}^{2}}x)+({{\sin }^{3}}x-co{{s}^{3}}x)+({{\sin }^{4}}x-co{{s}^{4}}x)=0 \)

 \( \Leftrightarrow (\sin x-\cos x)+(\sin x-cosx)(\sin x+\cos x)+(\sin x-cosx)(1+\sin x\cos x) \)

 \( +(\sin x-cosx)(\sin x+\cos x)=0 \).

 \( \Leftrightarrow \left[ \begin{align}  & \sin x-\cos x=0 \\  & 1+(\sin x+\cos x)+(1+\sin x.\cos x)+(\sin x+\cos x)=0 \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & \sin x-\cos x=0\begin{matrix}   {} & {} & {} & (1)  \\\end{matrix} \\  & 2(\sin x+\cos x)+\sin x\cos x+2=0\begin{matrix}  {} & (2)  \\\end{matrix} \\ \end{align} \right. \).

+ Giải (1) \( \Leftrightarrow \tan x=1\Leftrightarrow x=\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

+ Giải (2): Đặt  \( t=\sin x+\cos x=\sqrt{2}\cos \left( x-\frac{\pi }{4} \right) \), với điều kiện  \( \left| t \right|\le \sqrt{2} \) thì

 \( {{t}^{2}}=1+2sinxcosx \)

(2) thành:  \( 2t+\frac{{{t}^{2}}-1}{2}+2=0\Leftrightarrow {{t}^{2}}+4t+3=0\Leftrightarrow \left[ \begin{align} & t=-1\text{ }(n) \\  & t=-3\text{ }(\ell ) \\ \end{align} \right. \).

 \( \Rightarrow \sqrt{2}\cos \left( x-\frac{\pi }{4} \right)=-1\Leftrightarrow \cos \left( x-\frac{\pi }{4} \right)=-\frac{\sqrt{2}}{2}=\cos \frac{3\pi }{4} \)

 \( \Leftrightarrow \left[ \begin{align}  & x-\frac{\pi }{4}=\frac{3\pi }{4}+k2\pi  \\  & x-\frac{\pi }{4}=-\frac{3\pi }{4}+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=\pi +k2\pi  \\  & x=-\frac{\pi }{2}+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: 2sin^3x−sinx=2cos^3x−cosx+cos2x

Giải phương trình: \( 2{{\sin }^{3}}x-\sin x=2{{\cos }^{3}}x-\cos x+\cos 2x \)  (*)

Hướng dẫn giải:

(*) \( \Leftrightarrow 2({{\sin }^{3}}x-{{\cos }^{3}}x)-(\sin x-\cos x)+{{\sin }^{2}}x-{{\cos }^{2}}x=0 \)

 \( \Leftrightarrow 2(\sin x-\cos x)({{\sin }^{2}}x+sinxcosx+co{{s}^{2}}x)-(\sin x-\cos x)+(\sin x-\cos x)(\sin x+\cos x)=0 \)

\(\Leftrightarrow \left[ \begin{align}  & \sin x-\cos x=0\begin{matrix}  {} & {} & {} & (1)  \\\end{matrix} \\  & 2(1+\sin x\cos x)-1+(\sin x+\cos x)=0\begin{matrix}  {} & (2)  \\\end{matrix} \\ \end{align} \right.\)

+  \( (1)\Leftrightarrow \tan x=1\Leftrightarrow x=\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

+ Xét (2) đặt:  \( t=\sin x+\cos x=\sqrt{2}\cos \left( x-\frac{\pi }{4} \right)\), với điều kiện:  \( \left| t \right|\le \sqrt{2} \) .

Khi đó:  \( {{t}^{2}}=1+\sin 2x \).

Vậy (2) thành:  \( t+({{t}^{2}}-1)+1=0\Leftrightarrow t(t+1)=0\Leftrightarrow t=0\vee t=-1 \)

Với  \( t=0\Rightarrow \cos \left( x-\frac{\pi }{4} \right)=0\Leftrightarrow x-\frac{\pi }{4}=\frac{\pi }{2}+k\pi \Leftrightarrow x=\frac{3\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

Với  \( t=-1\Rightarrow \sqrt{2}\cos \left( x-\frac{\pi }{4} \right)=-1\Leftrightarrow \cos \left( x-\frac{\pi }{4} \right)=-\frac{\sqrt{2}}{2}=\cos \frac{3\pi }{4} \)

 \( \Leftrightarrow \left[ \begin{align}  & x-\frac{\pi }{4}=\frac{3\pi }{4}+k2\pi  \\  & x-\frac{\pi }{4}=-\frac{3\pi }{4}+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=\pi +k2\pi  \\  & x=-\frac{\pi }{2}+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: 3tan^3x−tanx+3(1+sinx)/cos^2x=8cos^2(π/4−x/2)

Giải phương trình: \( 3{{\tan }^{3}x}-\tan x+\frac{3(1+\sin x)}{{{\cos }^{2}}x}=8{{\cos }^{2}}\left( \frac{\pi }{4}-\frac{x}{2} \right) \)  (*)

Hướng dẫn giải:

Điều kiện:  \( \cos x\ne 0\Leftrightarrow \sin x\ne \pm 1 \).

Lúc đó: (*) \( \Leftrightarrow \tan x(3{{\tan }^{2}}x-1)+3(1+\sin x)(1+{{\tan }^{2}}x)=4\left[ 1+\cos \left( \frac{\pi }{2}-x \right) \right]=4(1+\sin x) \)

\(\Leftrightarrow \tan x(3{{\tan }^{2}}x-1)+(1+\sin x)\left[ 3(1+{{\tan }^{2}}x)-4 \right]=0\)

\(\Leftrightarrow (3{{\tan }^{2}}x-1)(\tan x+1+\sin x)=0\Leftrightarrow (3{{\tan }^{2}}x-1)(\sin x+\cos x+\sin x\cos x)=0\)

 \( \Rightarrow \left[ \begin{align} & 3{{\tan }^{2}}x=1\begin{matrix}  {} & {} & {} & (1)  \\\end{matrix} \\  & \sin x+\cos x+\sin x\cos x=0\begin{matrix}   {} & (2)  \\\end{matrix} \\ \end{align} \right. \)

+ Giải (1) \( \Leftrightarrow {{\tan }^{2}}x=\frac{1}{3}\Leftrightarrow \tan x=\pm \frac{\sqrt{3}}{3}\Leftrightarrow x=\pm \frac{\pi }{6}+k\pi ,\text{ }k\in \mathbb{Z} \).

+ Giải (2): Đặt  \( t=\sin x+\cos x=\sqrt{2}\sin \left( x+\frac{\pi }{4} \right) \), với điều kiện  \( \left| t \right|\le \sqrt{2} \) và  \( t\ne \pm 1 \).

Thì  \( {{t}^{2}}=1+2\sin x\cos x \)

(2) thành:  \( t+\frac{{{t}^{2}}-1}{2}=0\Leftrightarrow {{t}^{2}}+2t-1=0\Leftrightarrow \left[ \begin{align} & t=-1-\sqrt{2}\text{ }(\ell ) \\  & t=-1+\sqrt{2}\text{ }(n) \\ \end{align} \right. \)

 \( \Rightarrow \sqrt{2}\sin \left( x+\frac{\pi }{4} \right)=\sqrt{2}-1\Leftrightarrow \sin \left( x+\frac{\pi }{4} \right)=\frac{\sqrt{2}-1}{\sqrt{2}} \)

 \( \Leftrightarrow \left[ \begin{align}  & x+\frac{\pi }{4}=\arcsin \left( \frac{\sqrt{2}-1}{\sqrt{2}} \right)+k2\pi  \\  & x+\frac{\pi }{4}=\pi -\arcsin \left( \frac{\sqrt{2}-1}{\sqrt{2}} \right)+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align} & x=-\frac{\pi }{4}+\arcsin \left( \frac{\sqrt{2}-1}{\sqrt{2}} \right)+k2\pi  \\  & x=-\frac{3\pi }{4}-\arcsin \left( \frac{\sqrt{2}-1}{\sqrt{2}} \right)+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: 3(cotx−cosx)−5(tanx−sinx)=2

Giải phương trình: \( 3(\cot x-\cos x)-5(\tan x-\sin x)=2 \)  (*)

Hướng dẫn giải:

Với điều kiện  \( \sin 2x\ne 0 \), nhân 2 vế phương trình cho  \( \sin x\cos x\ne 0 \) thì:

(*) \( \Leftrightarrow 3{{\cos }^{2}}x(1-sinx)-5{{\sin }^{2}}x(1-cosx)=2sinxcosx \)

 \( \Leftrightarrow 3\cos x\left[ \cos x(1-\sin x)+\sin x \right]-5\sin x\left[ \sin x(1-\cos x)+\cos x \right]=0 \)

 \( \Leftrightarrow 3\cos x(\cos x-\sin x\cos x+\sin x)-5\sin x(\sin x-\sin x\cos x+\cos x)=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & \sin x+\cos x-\sin x\cos x=0\begin{matrix}   {} & (1)  \\\end{matrix} \\ & 3\cos x-5\sin x=0\begin{matrix}   {} & {} & {} & (2)  \\\end{matrix} \\ \end{align} \right. \).

(Ghi chú:  \( A.B+A.C=A.D\Leftrightarrow \left[ \begin{align}  & A=0 \\  & B+C=D \\ \end{align} \right. \))

+ Giải (1): Đặt  \( t=\sin x+\cos x=\sqrt{2}\sin \left( x+\frac{\pi }{4} \right) \) thì

 \( {{t}^{2}}=1+2\sin x\cos x \) với điều kiện:  \( \left| t \right|\le \sqrt{2} \) và  \( t\ne \pm 1 \).

(1) thành:  \( t-\frac{{{t}^{2}}-1}{2}=0\Leftrightarrow {{t}^{2}}-2t-1=0 \)

 \( \Leftrightarrow \left[ \begin{align} & t=1+\sqrt{2}\text{ }(\ell ) \\ & t=1-\sqrt{2}\text{ }(n) \\ \end{align} \right. \)

Vậy:  \( \sqrt{2}\sin \left( x+\frac{\pi }{4} \right)=1-\sqrt{2}\Leftrightarrow \sin \left( x+\frac{\pi }{4} \right)=\frac{1-\sqrt{2}}{2} \)

 \( \Leftrightarrow \left[ \begin{align}  & x+\frac{\pi }{4}=\arcsin \left( \frac{1-\sqrt{2}}{2} \right)+k2\pi  \\  & x+\frac{\pi }{4}=\pi -\arcsin \left( \frac{1-\sqrt{2}}{2} \right)+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=-\frac{\pi }{4}+\arcsin \left( \frac{1-\sqrt{2}}{2} \right)+k2\pi  \\  & x=\frac{3\pi }{4}-\arcsin \left( \frac{1-\sqrt{2}}{2} \right)+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

+ Giải (2) \( \Leftrightarrow \tan x=\frac{3}{5}\Leftrightarrow x=\arctan \left( \frac{3}{5} \right)+h\pi ,\text{ }h\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình 2√(sinx+cosx)=tanx+cotx

Giải phương trình \( \sqrt{2}(\sin x+\cos x)=\tan x+\cot x \)  (*)

Hướng dẫn giải:

Điều kiện:  \( \left\{ \begin{align}  & \sin x\ne 0 \\  & \cos x\ne 0 \\ \end{align} \right.\Leftrightarrow \sin 2x\ne 0 \).

Lúc đó: (*)\(\Leftrightarrow \sqrt{2}(\sin x+\cos x)=\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\)

 \( \sqrt{2}(\sin x+\cos x)=\frac{{{\sin }^{2}}x+{{\cos }^{2}}x}{\sin x\cos x}=\frac{1}{\sin x\cos x} \).

Đặt  \( t=\sin x+\cos x=\sqrt{2}\sin \left( x+\frac{\pi }{4} \right) \) thì:

 \( {{t}^{2}}=1+2\sin x\cos x\Rightarrow \sin x\cos x=\frac{{{t}^{2}}-1}{2} \) với  \( \left| t \right|\le \sqrt{2} \)và  \( {{t}^{2}}\ne 1 \) .

(*) thành  \( \sqrt{2}t=\frac{2}{{{t}^{2}}-1}\Leftrightarrow \sqrt{2}{{t}^{3}}-\sqrt{2}t-2=0 \) (Hiển nhiên  \( t=\pm 1 \) không là nghiệm)

 \( \Leftrightarrow (t-\sqrt{2})(\sqrt{2}{{t}^{2}}+2t+\sqrt{2})=0\Leftrightarrow \left[ \begin{align}  & t=\sqrt{2} \\  & {{t}^{2}}+\sqrt{2}t+1=0\text{ }(\text{vô nghiệm }) \\ \end{align} \right. \).

Vậy (*) \( \Leftrightarrow \sqrt{2}\sin \left( x+\frac{\pi }{4} \right)=\sqrt{2}\Leftrightarrow \sin \left( x+\frac{\pi }{4} \right)=1\Leftrightarrow x+\frac{\pi }{4}=\frac{\pi }{2}+k2\pi \)

 \( \Leftrightarrow x=\frac{\pi }{4}+k2\pi ,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: −1+sin^3x+cos^3x=3/2sin2x

Giải phương trình: \( -1+{{\sin }^{3}}x+{{\cos }^{3}}x=\frac{3}{2}\sin 2x \)  (*)

Hướng dẫn giải:

(*) \( \Leftrightarrow -1+(\sin x+\cos x)(1-\sin x\cos x)=\frac{3}{2}.2\sin x\cos x \).

Đặt  \( t=\sin x+\cos x=\sqrt{2}\sin \left( x+\frac{\pi }{4} \right) \), với điều kiện  \( \left| t \right|\le \sqrt{2} thì {{t}^{2}}=1+2\sin x\cos x \).

Vậy (*) thành:  \( -1+t\left( 1-\frac{{{t}^{2}}-1}{2} \right)=\frac{3}{2}({{t}^{2}}-1) \)

 \( \Leftrightarrow -2+t(3-{{t}^{2}})=3({{t}^{2}}-1)\Leftrightarrow {{t}^{3}}+3{{t}^{2}}-3t-1=0 \)

 \( \Leftrightarrow (t-1)({{t}^{2}}+4t+1)=0\Leftrightarrow \left[ \begin{align}  & t=1\text{ }(n) \\ & t=-2+\sqrt{3}\text{ }(n) \\  & t=-2-\sqrt{3}\text{ }(\ell ) \\ \end{align} \right. \).

+ Với  \( t=1\Rightarrow \sin \left( x+\frac{\pi }{4} \right)=\frac{1}{\sqrt{2}}=\sin \frac{\pi }{4} \)

\(\Leftrightarrow \left[ \begin{align}  & x+\frac{\pi }{4}=\frac{\pi }{4}+k2\pi  \\  & x+\frac{\pi }{4}=\frac{3\pi }{4}+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=k2\pi  \\  & x=\frac{\pi }{2}+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \)

+ Với  \( t=\sqrt{3}-2\Rightarrow \sin \left( x+\frac{\pi }{4} \right)=\frac{\sqrt{3}-2}{\sqrt{2}} \)

 \( \Leftrightarrow \left[ \begin{align}  & x+\frac{\pi }{4}=\arcsin \left( \frac{\sqrt{3}-2}{\sqrt{2}} \right)+h2\pi  \\  & x+\frac{\pi }{4}=\pi -\arcsin \left( \frac{\sqrt{3}-2}{\sqrt{2}} \right)+h2\pi  \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align} & x=-\frac{\pi }{4}+\arcsin \left( \frac{\sqrt{3}-2}{\sqrt{2}} \right)+h2\pi  \\  & x=\frac{3\pi }{4}-\arcsin \left( \frac{\sqrt{3}-2}{\sqrt{2}} \right)+h2\pi  \\ \end{align} \right.,\text{ }h\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: sinx+sin^2x+cos^3x=0

Giải phương trình: \( \sin x+{{\sin }^{2}}x+{{\cos }^{3}}x=0 \)  (*)

Hướng dẫn giải:

(*) \( \Leftrightarrow \sin x(1+\sin x)+\cos x(1-{{\sin }^{2}}x)=0 \)

 \( \Leftrightarrow \sin x(1+\sin x)+\cos x(1-\sin x)(1+\sin x)=0 \)

 \( \Leftrightarrow (1+\sin x)\left[ \sin x+\cos x(1-\sin x) \right]=0\Leftrightarrow \left[ \begin{align}  & \sin x=-1\begin{matrix}   {} & {} & (1)  \\\end{matrix} \\  & \sin x+\cos x-\sin x\cos x=0\begin{matrix}  {} & (2)  \\\end{matrix} \\ \end{align} \right. \).

+  \( (1)\Leftrightarrow x=-\frac{\pi }{2}+k2\pi ,\text{ }k\in \mathbb{Z} \).

+ Xét (2): Đặt  \( t=\sin x+\cos x=\sqrt{2}\cos \left( x-\frac{\pi }{4} \right) \), điều kiện  \( \left| t \right|\le \sqrt{2} thì {{t}^{2}}=1+2\sin x\cos x \).

Vậy (2) thành:  \( t-\frac{{{t}^{2}}-1}{2}=0\Leftrightarrow {{t}^{2}}-2t-1=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & t=1-\sqrt{2}\text{ }(n) \\  & t=1+\sqrt{2}\text{ }(\ell ) \\ \end{align} \right.\Rightarrow \sqrt{2}\cos \left( x-\frac{\pi }{4} \right)=1-\sqrt{2} \)

 \( \Leftrightarrow \cos \left( x-\frac{\pi }{4} \right)=\frac{\sqrt{2}}{2}-1 \)  \( \Leftrightarrow x-\frac{\pi }{4}=\pm \arccos \left( \frac{\sqrt{2}}{2}-1 \right)+h2\pi \)

 \( \Leftrightarrow x=\frac{\pi }{4}\pm \arccos \left( \frac{\sqrt{2}}{2}-1 \right)+h2\pi ,\text{ }h\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Cho phương trình: 1/cos^2x+cot^2x+m(tanx+cotx)+2=0

Cho phương trình: \( \frac{1}{{{\cos }^{2}}x}+{{\cot }^{2}}x+m(\tan x+\cot x)+2=0 \)  (1)

a) Giải phương trình khi \( m=\frac{5}{2} \).

b) Tìm m để phương trình có nghiệm.

Hướng dẫn giải:

Ta có:  \( (1)\Leftrightarrow {{\tan }^{2}}x+co{{t}^{2}}x+m(tanx+cotx)+3=0 \)

Đặt  \( t=\tan x+\cot x=\frac{2}{\sin 2x} \) (điều kiện  \( \left| t \right|\ge 2 \))

 \( \Rightarrow {{t}^{2}}={{\tan }^{2}}x+{{\cot }^{2}}x+2 \)

Phương trình (1) thành:  \( {{t}^{2}}+mt+1=0 \)   (2)

a) Khi \( m=\frac{5}{2} \) ta được phương trình: \( 2{{t}^{2}}+5t+2=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & t=-2\text{ }(n) \\  & t=-\frac{1}{2}\text{ }(\ell ) \\ \end{align} \right. \).

Suy ra:  \( \frac{2}{\sin 2x}=-2\Leftrightarrow \sin 2x=-1 \)

 \( \Leftrightarrow 2x=-\frac{\pi }{2}+k2\pi \Leftrightarrow x=-\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

b)

Ta có:  \( (2)\Leftrightarrow mt=-1-{{t}^{2}}\Leftrightarrow m=-\frac{1}{t}-t \) (do  \( t=0 \) không là nghiệm của (2))

Xét  \( y=-\frac{1}{t}-t \) với  \( \left| t \right|\ge 2 \).

Thì  \( {y}’=\frac{1}{{{t}^{2}}}-1=\frac{1-{{t}^{2}}}{{{t}^{2}}} \).

Ta có:  \( {y}’=0\Leftrightarrow t=\pm 1 \).

Do đó (1) có nghiệm  \( \Leftrightarrow (d):y=m \) cắt  \( (C):y=-\frac{1}{t}-t \) trên  \( \left( -\infty ;-2 \right]\cup \left[ 2;+\infty  \right) \)

 \( \Leftrightarrow m\le -\frac{5}{2}\vee m\ge \frac{5}{2} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: 2/sin^2x+2tan^2x+5tanx+5cotx+4=0

Giải phương trình: \( \frac{2}{{{\sin }^{2}}x}+2{{\tan }^{2}}x+5\tan x+5\cot x+4=0 \)  (*)

Hướng dẫn giải:

Cách 1: (*) \( \Leftrightarrow 2(1+{{\cot }^{2}}x)+2{{\tan }^{2}}x+5(\tan x+\cot x)+4=0 \)

 \( \Leftrightarrow 2({{\tan }^{2}}x+{{\cot }^{2}}x)+5(\tan x+\cot x)+6=0 \)

 \( \Leftrightarrow 2\left[ {{(\tan x+\cot x)}^{2}}-2 \right]+5(\tan x+\cot x)+6=0 \).

Đặt  \( t=\tan x+\cot x=\frac{2}{\sin 2x} \), với điều kiện  \( \left| t \right|\ge 2 \).

Ta được phương trình:  \( 2{{t}^{2}}+5t+2=0\Leftrightarrow \left[ \begin{align}  & t=-2\text{ }(n) \\  & t=-\frac{1}{2}\text{ }(\ell ) \\ \end{align} \right. \).

Với  \( t=-2\Rightarrow \frac{2}{\sin 2x}=-2\Leftrightarrow \sin 2x=-1 \)

 \( \Leftrightarrow 2x=-\frac{\pi }{2}+k2\pi \Leftrightarrow x=-\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

Cách 2: Đặt  \( u=\tan x \) (với điều kiện  \( u\ne 0 \)).

Phương trình (*) thành:  \( 2+\frac{2}{{{u}^{2}}}+2{{u}^{2}}+5u+\frac{5}{u}+4=0 \)

 \( \Leftrightarrow 2+2{{u}^{4}}+5{{u}^{3}}+5u+6{{u}^{2}}=0\Leftrightarrow (u+1)(2{{u}^{3}}+3{{u}^{2}}+3u+2)=0 \)

\(\Leftrightarrow {{(u+1)}^{2}}(2{{u}^{2}}+u+2)=0\Leftrightarrow \left[ \begin{align} & u=-1\text{ }(n) \\  & 2{{u}^{2}}+u+2=0\text{ }(\text{vô nghiệm }) \\ \end{align} \right.\)

Với  \( u=-1\Rightarrow \tan x=-1\Leftrightarrow x=-\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: tanx+tan^2x+tan^3x+cotx+cot^2x+cot^3x=6

Giải phương trình: \( \tan x+{{\tan }^{2}}x+{{\tan }^{3}}x+\cot x+{{\cot }^{2}}x+{{\cot }^{3}}x=6 \) (*)

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow (\tan x+\cot x)+({{\tan }^{2}}x+{{\cot }^{2}}x)+({{\tan }^{3}}x+{{\cot }^{3}}x)=6 \)

 \( \Leftrightarrow (\tan x+\cot x)+{{(\tan x+\cot x)}^{2}}-2+(\tan x+\cot x)({{\tan }^{2}}x+{{\cot }^{2}}x-1)=6 \)

 \( \Leftrightarrow (\tan x+\cot x)+{{(\tan x+\cot x)}^{2}}+(\tan x+\cot x)\left[ {{(\tan x+\cot x)}^{2}}-3 \right]=8 \) (**)

Đặt  \( t=\tan x+\cot x=\frac{2}{\sin 2x} \), với điều kiện  \( \left| t \right|\ge 2 \).

Khi đó phương trình (**) thành:  \( t+{{t}^{2}}+t({{t}^{2}}-3)=8\Leftrightarrow {{t}^{3}}+{{t}^{2}}-2t-8=0 \)

\(\Leftrightarrow (t-2)({{t}^{2}}+3t+4)=0\Leftrightarrow \left[ \begin{align} & t=2\text{ }(n) \\  & {{t}^{2}}+3t+4=0\text{ }(\text{vô nghiệm }) \\ \end{align} \right.\)

Với  \( t=2\Rightarrow \frac{2}{\sin 2x}=2\Leftrightarrow \sin 2x=1 \)

 \( \Leftrightarrow 2x=\frac{\pi }{2}+k2\pi \Leftrightarrow x=\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: 3tan^2x+4tanx+4cotx+3cot^2x+2=0

Giải phương trình: \( 3{{\tan }^{2}}x+4\tan x+4\cot x+3{{\cot }^{2}}x+2=0 \) (*)

Hướng dẫn giải:

Đặt  \( t=\tan x+\cot x=\frac{2}{\sin 2x} \), với điều kiện  \( \left| t \right|\ge 2 \).

Thì  \( {{t}^{2}}={{\tan }^{2}}x+{{\cot }^{2}}x+2 \).

(*) thành:  \( 3({{t}^{2}}-2)+4t+2=0\Leftrightarrow 3{{t}^{2}}+4t-4=0\Leftrightarrow \left[ \begin{align}  & t=\frac{2}{3}\text{ }(\ell ) \\  & t=-2\text{ }(n) \\ \end{align} \right. \).

Với  \( t=-2\Leftrightarrow \frac{2}{\sin 2x}=-2\Leftrightarrow \sin 2x=-1\Leftrightarrow 2x=-\frac{\pi }{2}+k2\pi  \)

 \( \Leftrightarrow x=-\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Cho phương trình: 2cos2x+sin^2xcosx+sinxcos^2x=m(sinx+cosx)

Cho phương trình: \( 2\cos 2x+{{\sin }^{2}}xcosx+sinxco{{s}^{2}}x=m(\sin x+\cos x) \)  (*)

a) Giải phương trình khi \( m=2 \).

b) Tìm m để phương trình (*) có ít nhất một nghiệm trên \( \left[ 0;\frac{\pi }{2} \right] \).

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow 2({{\cos }^{2}}x-{{\sin }^{2}}x)+\sin x\cos x(\sin x+\cos x)=m(\sin x+\cos x) \)

 \( \Leftrightarrow (\cos x+\sin x)\left[ 2(\cos x-\sin x)+\sin x\cos x-m \right]=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & \cos x+\sin x=0\begin{matrix}   {} & {} & {} & (1)  \\\end{matrix} \\  & 2(\cos x-\sin x)+\sin x\cos x=m\begin{matrix}   {} & (2)  \\\end{matrix} \\ \end{align} \right. \).

Đặt  \( t=\cos x-\sin x=\sqrt{2}\cos \left( x+\frac{\pi }{4} \right) \), với điều kiện  \( \left| t \right|\le \sqrt{2} \).

Thì  \( {{t}^{2}}=1-2\sin x\cos x \).

Ta có:  \( (1)\Leftrightarrow \sin x=-\cos x\Leftrightarrow \tan x=-1\Leftrightarrow x=-\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

Phương trình (2) thành:  \( 2t+\frac{1-{{t}^{2}}}{2}=m\Leftrightarrow -{{t}^{2}}+4t+1=2m \)  (**)

a) Khi \( m=2 \) thì (**) thành: \( {{t}^{2}}-4t+3=0\Leftrightarrow \left[ \begin{align}  & t=1\text{ }(n) \\  & t=3\text{ }(\ell ) \\ \end{align} \right. \).

Khi đó: \(\sqrt{2}\cos \left( x+\frac{\pi }{4} \right)=1\Leftrightarrow \cos \left( x+\frac{\pi }{4} \right)=\frac{\sqrt{2}}{2}=\cos \frac{\pi }{4}\)

\(\Leftrightarrow \left[ \begin{align}  & x+\frac{\pi }{4}=\frac{\pi }{4}+k2\pi  \\  & x+\frac{\pi }{4}=-\frac{\pi }{4}+k2\pi  \\ \end{align} \right.\)\(\Leftrightarrow \left[ \begin{align} & x=k2\pi  \\  & x=-\frac{\pi }{2}+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z}\).

Vậy nghiệm của phương trình là: \(\left[ \begin{align}  & x=-\frac{\pi }{4}+k\pi  \\  & x=k2\pi  \\  & x=-\frac{\pi }{2}+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z}\).

b) Ta có: \( x\in \left[ 0;\frac{\pi }{2} \right]\Leftrightarrow x+\frac{\pi }{4}\in \left[ \frac{\pi }{4};\frac{3\pi }{4} \right] \).

\(\Rightarrow -\frac{\sqrt{2}}{2}\le \cos \left( x+\frac{\pi }{4} \right)\le \frac{\sqrt{2}}{2}\Rightarrow -1\le t\le 1\).

Do nghiệm  \( x=-\frac{\pi }{4}+k\pi \notin \left[ 0;\frac{\pi }{2} \right],\text{ }\forall k\in \mathbb{R} \).

Nên yêu cầu bài toán  \( \Leftrightarrow \) (**) có nghiệm trên  \( [-1;1] \).

Xét  \( y=-{{t}^{2}}+4t+1 \) thì  \( {y}’=-2t+4>0,\forall t\in [-1;1] \).

 \( \Rightarrow y \) đồng biến trên  \( [-1;1] \).

Do đó: yêu cầu bài toán  \( \Leftrightarrow -4=y(-1)\le 2m\le y(1)=4\Leftrightarrow -2\le m\le 2 \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Cho phương trình: cos^3x−sin^3x=m

Cho phương trình: \( {{\cos }^{3}}x-{{\sin }^{3}}x=m \)   (1)

a) Giải phương trình (1) khi m = 1 bằng cách đặt ẩn phụ \( t=\cos x-\sin x \).

b) Tìm m sao cho (1) có đúng hai nghiệm trên \( \left[ -\frac{\pi }{4};\frac{\pi }{4} \right] \).

Hướng dẫn giải:

Ta có:  \( (1)\Leftrightarrow (\cos x-\sin x)(1+\sin x\cos x)=m \).

Đặt  \( t=\cos x-\sin x=\sqrt{2}\cos \left( x+\frac{\pi }{4} \right) \), với điều kiện  \( \left| t \right|\le \sqrt{2} \).

Thì  \( {{t}^{2}}=1-2\sin x\cos x \).

Khi đó (1) thành:  \( t\left( 1+\frac{1-{{t}^{2}}}{2} \right)=m\Leftrightarrow t(3-{{t}^{2}})=2m \)  (2)

a) Khi \( m=1 \) thì (2) thành: \( {{t}^{3}}-3t+2=0\Leftrightarrow (t-1)({{t}^{2}}+t-2)=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & t=1\text{ }(n) \\  & t=-2\text{ }(\ell ) \\ \end{align} \right. \).

Suy ra:  \( \sqrt{2}\cos \left( x+\frac{\pi }{4} \right)=1\Leftrightarrow \cos \left( x+\frac{\pi }{4} \right)=\frac{\sqrt{2}}{2}=\cos \frac{\pi }{4} \)

 \( \Leftrightarrow \left[ \begin{align}  & x+\frac{\pi }{4}=\frac{\pi }{4}+k2\pi  \\  & x+\frac{\pi }{4}=-\frac{\pi }{4}+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=k2\pi  \\  & x=-\frac{\pi }{2}+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

b) Nếu \( x\in \left[ -\frac{\pi }{4};\frac{\pi }{4} \right] \) thì \( 0\le x+\frac{\pi }{4}\le \frac{\pi }{2} \) nên  \( 0\le \cos \left( x+\frac{\pi }{4} \right)\le 1 \)

 \( \Leftrightarrow 0\le t=\sqrt{2}\cos \left( x+\frac{\pi }{4} \right)\le \sqrt{2} \)

Nhận xét rằng với mỗi t tìm được trên  \( \left[ 0;\sqrt{2} \right] \).

Ta tìm duy nhất một  \( x\in \left[ -\frac{\pi }{4};\frac{\pi }{4} \right] \).

Xét  \( f(t)=-{{t}^{3}}+3t \) trên \( \left[ 0;\sqrt{2} \right] \).

 \( \Rightarrow {f}'(t)=-3{{t}^{2}}+3 \).

Vậy (1) có đúng hai nghiệm  \( x\in \left[ -\frac{\pi }{4};\frac{\pi }{4} \right] \)

 \( \Leftrightarrow (d):y=2m \) cắt  \( (C):y=-{{t}^{3}}+3t \) trên  \( \left[ 0;\sqrt{2} \right] \) tại 2 điểm phân biệt

 \( \Leftrightarrow \sqrt{2}\le 2m<2\Leftrightarrow \frac{\sqrt{2}}{2}\le m<1 \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: cos^3x+sin^2x=cos2x

Giải phương trình: \( {{\cos }^{3}}x+{{\sin }^{2}}x=\cos 2x \)   (*)

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow (\cos x+\sin x)(1-\sin x\cos x)={{\cos }^{2}}x-{{\sin }^{2}}x \)

 \( \Leftrightarrow (\sin x+\cos x)\left[ 1-\sin x\cos x-(\cos x-\sin x) \right]=0 \)

\(\Leftrightarrow \left[ \begin{align}  & \sin x+\cos x=0\begin{matrix}   {} & {} & {} & (1)  \\\end{matrix} \\  & \sin x-\cos x-\sin x\cos x+1=0\begin{matrix}   {} & (2)  \\\end{matrix} \\ \end{align} \right.\)

+ Giải  \( (1)\Leftrightarrow \tan x=-1\Leftrightarrow x=-\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

+ Giải (2): Đặt  \( t=\sin x-\cos x=\sqrt{2}\sin \left( x-\frac{\pi }{4} \right)\) với điều kiện  \( \left| t \right|\le \sqrt{2}  \)

Thì  \( {{t}^{2}}=-1-2\sin x\cos x \).

(2) thành:  \( t-\frac{1-{{t}^{2}}}{2}+1=0\Leftrightarrow {{t}^{2}}+2t+1=0\Leftrightarrow t=-1 \)

 \( \Rightarrow \sqrt{2}\sin \left( x-\frac{\pi }{4} \right)=-1\Leftrightarrow \sin \left( x-\frac{\pi }{4} \right)=-\frac{\sqrt{2}}{2}=\sin \left( -\frac{\pi }{4} \right) \)

 \( \Leftrightarrow \left[ \begin{align}  & x-\frac{\pi }{4}=-\frac{\pi }{4}+k2\pi  \\  & x-\frac{\pi }{4}=\pi +\frac{\pi }{4}+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=k2\pi  \\  & x=\frac{3\pi }{2}+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: cos2x+5=2(2−cosx)(sinx−cosx)

Giải phương trình: \( \cos 2x+5=2(2-\cos x)(\sin x-\cos x) \)  (*)

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow ({{\cos }^{2}}x-{{\sin }^{2}}x)+5=2(2-\cos x)(\sin x-\cos x) \)

 \( \Leftrightarrow (\sin x-\cos x)\left[ 2(2-\cos x)+(\sin x+\cos x) \right]-5=0 \)

 \( \Leftrightarrow (\sin x-\cos x)(\sin x-\cos x+4)-5=0 \)  (**)

Đặt  \( t=\sin x-\cos x=\sqrt{2}\sin \left( x-\frac{\pi }{4} \right) \) với điều kiện  \( \left| t \right|\le 2 \).

(**) thành:  \( t(t+4)-5=0\Leftrightarrow {{t}^{2}}+4t-5=0\Leftrightarrow \left[ \begin{align} & t=1\text{ }(n) \\  & t=-5\text{ }(\ell ) \\ \end{align} \right. \).

 \( \Rightarrow \sqrt{2}\sin \left( x-\frac{\pi }{4} \right)=1\Leftrightarrow \sin \left( x-\frac{\pi }{4} \right)=\frac{\sqrt{2}}{2}=\sin \frac{\pi }{4} \)

 \( \Leftrightarrow \left[ \begin{align}  & x-\frac{\pi }{4}=\frac{\pi }{4}+k2\pi  \\  & x-\frac{\pi }{4}=\pi -\frac{\pi }{4}+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=\frac{\pi }{2}+k2\pi  \\  & x=\pi +k2\pi  \\ \end{align} \right.,k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: 2sinx+cotx=2sin2x+1

Giải phương trình: \( 2\sin x+\cot x=2\sin 2x+1 \)  (*)

Hướng dẫn giải:

Điều kiện:  \( \sin x\ne 0\Leftrightarrow \cos x\ne \pm 1 \).

Lúc đó (*) \( \Leftrightarrow 2\sin x+\frac{\cos x}{\sin x}=4\sin x\cos x+1 \)

 \( \Leftrightarrow 2{{\sin }^{2}}x+\cos x=4{{\sin }^{2}}x\cos x+\sin x \)

 \( \Leftrightarrow 2{{\sin }^{2}}x-\sin x-\cos x(4{{\sin }^{2}}x-1)=0 \)

 \( \Leftrightarrow \sin x(2\sin x-1)-\cos x(2\sin x-1)(2\sin x+1)=0 \)

 \( \Leftrightarrow (2\sin x-1)\left[ \sin x-\cos x(2\sin x+1) \right]=0 \)

 \( \Leftrightarrow \left[ \begin{align} & 2\sin x-1=0\begin{matrix}   {} & {} & {} & (1)  \\\end{matrix} \\  & \sin x-\cos x-\sin 2x=0\begin{matrix}   {} & (2)  \\\end{matrix} \\ \end{align} \right. \)

+ Ta có  \( (1)\Leftrightarrow \sin x=\frac{1}{2} \) (nhận do  \( \sin x\ne 0 \))

 \( \Leftrightarrow \left[ \begin{align}  & x=\frac{\pi }{6}+k2\pi  \\  & x=\frac{5\pi }{6}+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

+ Xét (2): Đặt  \( t=\sin x-\cos x=\sqrt{2}\sin \left( x-\frac{\pi }{4} \right) \), với điều kiện  \( \left| t \right|\le \sqrt{2} \) và  \( t\ne \pm 1 \)

Thì  \( {{t}^{2}}=1-\sin 2x \).        

Khi đó (2) thành:  \( t-(1-{{t}^{2}})=0\Leftrightarrow {{t}^{2}}+t-1=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & t=\frac{-1+\sqrt{5}}{2}\text{ }(n) \\  & t=\frac{-1-\sqrt{5}}{2}\text{ }(\ell ) \\ \end{align} \right. \)

Do đó:  \( \sqrt{2}\sin \left( x-\frac{\pi }{4} \right)=\frac{-1+\sqrt{5}}{2}\Leftrightarrow \sin \left( x-\frac{\pi }{4} \right)=\frac{-1+\sqrt{5}}{2\sqrt{2}} \)

 \( \Leftrightarrow \left[ \begin{align}  & x-\frac{\pi }{4}=\arcsin \left( \frac{\sqrt{5}-1}{2\sqrt{2}} \right)+k2\pi  \\  & x-\frac{\pi }{4}=\pi -\arcsin \left( \frac{\sqrt{5}-1}{2\sqrt{2}} \right)+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=\frac{\pi }{4}+\arcsin \left( \frac{\sqrt{5}-1}{2\sqrt{2}} \right)+k2\pi  \\  & x=\frac{5\pi }{4}-\arcsin \left( \frac{\sqrt{5}-1}{2\sqrt{2}} \right)+k2\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Cho phương trình: 2sin^2x−sinxcosx−cos^2x=m

Cho phương trình: \( 2{{\sin }^{2}}x-\sin x\cos x-{{\cos }^{2}}x=m \)   (*)

a) Tìm m sao cho phương trình có nghiệm.

b) Giải phương trình khi \( m=-1 \).

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow (1-\cos 2x)-\frac{1}{2}\sin 2x-\frac{1}{2}(1+\cos 2x)=m\Leftrightarrow \sin 2x+3\cos 2x=-2m+1 \)

a) (*) có nghiệm \( \Leftrightarrow {{a}^{2}}+{{b}^{2}}\ge {{c}^{2}} \)

 \( \Leftrightarrow 1+9\ge {{(1-2m)}^{2}}\Leftrightarrow 4{{m}^{2}}-4m-9\le 0\Leftrightarrow \frac{1-\sqrt{10}}{2}\le m\le \frac{1+\sqrt{10}}{2} \).

b) Khi \( m=-1 \) ta được phương trình: \( \sin 2x+3\cos 2x=3 \)  (1)

\(\Rightarrow \frac{1}{\sqrt{{{1}^{2}}+{{3}^{2}}}}\sin 2x+\frac{3}{\sqrt{{{1}^{2}}+{{3}^{2}}}}\cos 2x=\frac{3}{\sqrt{{{1}^{2}}+{{3}^{2}}}}\)

\(\Leftrightarrow \sin 2x.\cos \alpha +\cos 2x.\sin \alpha =\sin \beta \), với \(\cos \alpha =\frac{1}{\sqrt{10}},\sin \alpha =\frac{3}{\sqrt{10}},\sin \beta =\frac{3}{\sqrt{10}}\)

 \( \Leftrightarrow \sin \left( 2x+\alpha  \right)=\sin \beta \Leftrightarrow \left[ \begin{align}  & 2x+\alpha =\beta +k2\pi  \\ & 2x+\alpha =\pi -\beta +k2\pi  \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & x=\frac{-\alpha +\beta }{2}+k\pi  \\  & x=\frac{\pi -\alpha -\beta }{2}+k\pi  \\ \end{align} \right.,k\in \mathbb{Z} \), với \(\cos \alpha =\frac{1}{\sqrt{10}},\sin \alpha =\frac{3}{\sqrt{10}},\sin \beta =\frac{3}{\sqrt{10}}\).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: 4sin^3x.cos3x+4cos^3x.sin3x+3√3cos4x=3

Giải phương trình: \( 4{{\sin }^{3}}x.\cos 3x+4{{\cos }^{3}}x.\sin 3x+3\sqrt{3}\cos 4x=3 \)  (*)

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow 4{{\sin }^{3}}x\left( 4{{\cos }^{3}}x-3\cos x \right)+4{{\cos }^{3}}x\left( 3\sin x-4{{\sin }^{3}}x \right)+3\sqrt{3}\cos 4x=3 \)

 \( \Leftrightarrow -12{{\sin }^{3}}xcosx+12\sin x{{\cos }^{3}}x+3\sqrt{3}\cos 4x=3 \)

 \( \Leftrightarrow 4\sin x\cos x(-{{\sin }^{2}}x+{{\cos }^{2}}x)+\sqrt{3}\cos 4x=1\Leftrightarrow 2\sin 2x.\cos 2x+\sqrt{3}\cos 4x=1 \)

 \( \Leftrightarrow 2\sin 2x.\cos 2x+\sqrt{3}\cos 4x=1\Leftrightarrow \sin 4x+\sqrt{3}\cos 4x=1 \)

 \( \Leftrightarrow \frac{1}{2}\sin 4x+\frac{\sqrt{3}}{2}\cos 4x=\frac{1}{2}\Leftrightarrow \sin \left( 4x+\frac{\pi }{3} \right)=\sin \frac{\pi }{6} \)

 \( \Leftrightarrow \left[ \begin{align}  & 4x+\frac{\pi }{3}=\frac{\pi }{6}+k2\pi  \\  & 4x+\frac{\pi }{3}=\pi -\frac{\pi }{6}+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=-\frac{\pi }{24}+\frac{k\pi }{2} \\  & x=\frac{\pi }{8}+\frac{k\pi }{2} \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Giải phương trình: cos^4x+sin^4(x+π/4)=1/4

Giải phương trình: \( {{\cos }^{4}}x+{{\sin }^{4}}\left( x+\frac{\pi }{4} \right)=\frac{1}{4} \)  (*)

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow \frac{1}{4}{{(1+\cos 2x)}^{2}}+\frac{1}{4}{{\left[ 1-\cos \left( 2x+\frac{\pi }{2} \right) \right]}^{2}}=\frac{1}{4}\Leftrightarrow {{(1+\cos 2x)}^{2}}+{{(1+\sin 2x)}^{2}}=1 \)

 \( \Leftrightarrow 1+2\cos 2x+{{\cos }^{2}}2x+1+2\sin 2x+{{\sin }^{2}}2x=1\Leftrightarrow 2(\cos 2x+\sin 2x)=-2 \)

 \( \Leftrightarrow \cos 2x+\sin 2x=-1\Leftrightarrow \cos \left( 2x-\frac{\pi }{4} \right)=-\frac{1}{\sqrt{2}}=\cos \frac{3\pi }{4} \)

 \( \Leftrightarrow \left[ \begin{align}  & 2x-\frac{\pi }{4}=\frac{3\pi }{4}+k2\pi  \\  & 2x-\frac{\pi }{4}=-\frac{3\pi }{4}+k2\pi  \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=\frac{\pi }{2}+k\pi  \\  & x=-\frac{\pi }{4}+k\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).