Cho các số không âm a, b, c thỏa mãn \( \sqrt{a}+\sqrt{b}+\sqrt{c}=3 \). Chứng minh rằng: \( \sqrt{{{a}^{2}}+ab+{{b}^{2}}}+\sqrt{{{b}^{2}}+bc+{{c}^{2}}}+\sqrt{{{c}^{2}}+ca+{{a}^{2}}}\ge 3\sqrt{3} \).
Hướng dẫn giải:
Ta có: \( \sqrt{{{a}^{2}}+ab+{{b}^{2}}}+\sqrt{{{b}^{2}}+bc+{{c}^{2}}}+\sqrt{{{c}^{2}}+ca+{{a}^{2}}}\ge 3\sqrt{3} \)
\( \Leftrightarrow \sqrt{2{{a}^{2}}+2ab+2{{b}^{2}}}+\sqrt{2{{b}^{2}}+2bc+2{{c}^{2}}}+\sqrt{2{{c}^{2}}+2ca+2{{a}^{2}}}\ge 3\sqrt{6} \)
\( \Leftrightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{(a+b)}^{2}}}+\sqrt{{{b}^{2}}+{{c}^{2}}+{{(b+c)}^{2}}}+\sqrt{{{a}^{2}}+{{c}^{2}}+{{(a+c)}^{2}}}\ge 3\sqrt{6} \)
Áp dụng bất đẳng thức Bunhiakcopki: \(x.a+y.b\le \sqrt{({{x}^{2}}+{{y}^{2}})({{a}^{2}}+{{b}^{2}})}\).
Chứng minh: \(x.a+y.b\le \sqrt{({{x}^{2}}+{{y}^{2}})({{a}^{2}}+{{b}^{2}})}\)
\( \Leftrightarrow {{(x.a+y.b)}^{2}}\le {{x}^{2}}{{a}^{2}}+{{y}^{2}}{{b}^{2}}+{{x}^{2}}{{b}^{2}}+{{y}^{2}}{{a}^{2}}\Leftrightarrow {{x}^{2}}{{b}^{2}}+{{y}^{2}}{{a}^{2}}-2x.a.y.b\ge 0 \)
\( \Leftrightarrow {{(x.b-y.a)}^{2}}\ge 0 \) (luôn đúng)
Dấu “=” xảy ra \( \Leftrightarrow \frac{a}{x}=\frac{b}{y} \).
Áp dụng cho bài toán:
\(a+b\le \sqrt{({{1}^{2}}+{{1}^{2}}).({{a}^{2}}+{{b}^{2}})}=\sqrt{2({{a}^{2}}+{{b}^{2}})}\Leftrightarrow {{a}^{2}}+{{b}^{2}}\ge \frac{{{(a+b)}^{2}}}{2}\) (1)
\( b+c\le \sqrt{({{1}^{2}}+{{1}^{2}}).({{b}^{2}}+{{c}^{2}})}=\sqrt{2({{b}^{2}}+{{c}^{2}})}\Leftrightarrow {{b}^{2}}+{{c}^{2}}\ge \frac{{{(b+c)}^{2}}}{2} \) (2)
\(a+c\le \sqrt{({{1}^{2}}+{{1}^{2}}).({{a}^{2}}+{{c}^{2}})}=\sqrt{2({{a}^{2}}+{{c}^{2}})}\Leftrightarrow {{a}^{2}}+{{c}^{2}}\ge \frac{{{(a+c)}^{2}}}{2}\) (3)
Do đó: \( \sqrt{{{a}^{2}}+{{b}^{2}}+{{(a+b)}^{2}}}+\sqrt{{{b}^{2}}+{{c}^{2}}+{{(b+c)}^{2}}}+\sqrt{{{a}^{2}}+{{c}^{2}}+{{(a+c)}^{2}}} \)
\( \ge \sqrt{\frac{3}{2}{{(a+b)}^{2}}}+\sqrt{\frac{3}{2}{{(b+c)}^{2}}}+\sqrt{\frac{3}{2}{{(a+c)}^{2}}}=\frac{\sqrt{6}}{2}(2a+2b+2c)=3\sqrt{6} \) (đpcm)
Dấu “=” xảy ra \( \Leftrightarrow \) dấu “=” ở (1), (2), (3) đồng thời xảy ra và thỏa mãn \( \sqrt{a}+\sqrt{b}+\sqrt{c}=3\Leftrightarrow a=b=c=1 \).
Các bài toán liên quan
Các bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài phát hành!
Hệ Thống Trung Tâm Nhân Tài Việt!
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh các lớp 10, 11, 12, LTDH
- Cơ sở 1: Khu đô thị Garden, Thị trấn Đức Tài, Huyện Đức Linh, Tỉnh Bình Thuận
- Cơ sở 2: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Cơ sở 3: số 33/66, hẻm 33, đường số 5, P. Bình Hưng Hòa, Quận Tân Bình, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)