Cho phương trình 4×2+(m2+2m−15)x+(m+1)2−20=0 (m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1;x2 thỏa mãn x21+x2+2019=0

Cho phương trình \( 4{{x}^{2}}+({{m}^{2}}+2m-15)x+{{(m+1)}^{2}}-20=0 \) (m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm  \( {{x}_{1}};\,\,{{x}_{2}} \) thỏa mãn  \( x_{1}^{2}+{{x}_{2}}+2019=0 \).

Hướng dẫn giải:

Phương trình đã cho tương đương với  \( 4{{x}^{2}}+({{m}^{2}}+2m-15)x+{{m}^{2}}+2m-19=0 \)

Vì  \( a-b+c=0 \) nên phương trình có hai nghiệm là:  \( x=-1;\,\,x=\frac{19-2m-{{m}^{2}}}{4} \).

+ Trường hợp 1:  \( {{x}_{1}}=-1;\,\,{{x}_{2}}=\frac{19-2m-{{m}^{2}}}{4} \).

Khi đó:  \( x_{1}^{2}+{{x}_{2}}+2019=0\Leftrightarrow 1+\frac{19-2m-{{m}^{2}}}{4}+2019=0 \)

 \( \Leftrightarrow {{m}^{2}}+2m-8099=0\Leftrightarrow \left[ \begin{align}  & m=89 \\  & m=-91 \\ \end{align} \right. \).

+ Trường hợp 2: \({{x}_{1}}=\frac{19-2m-{{m}^{2}}}{4};\,\,{{x}_{2}}=-1\).

Khi đó:  \( x_{1}^{2}+{{x}_{2}}+2019=0\Leftrightarrow {{\left( \frac{19-2m-{{m}^{2}}}{4} \right)}^{2}}-1+2019=0 \)

 \( \Leftrightarrow {{\left( \frac{19-2m-{{m}^{2}}}{4} \right)}^{2}}=-2018 \)  (Vô lý)

Vậy  \( m\in \{89;-91\} \) là các giá trị cần tìm.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài phát hành!

Không tìm thấy bài viết nào.

Tìm m để phương trình x2−(m+2)x+m+1=0 có nghiệm thỏa mãn

Tìm m để phương trình \( {{x}^{2}}-(m+2)x+m+1=0 \) có nghiệm thỏa mãn:

a) \( \sqrt[3]{{{x}_{1}}}+\sqrt[3]{{{x}_{2}}}=10 \).

b) \( x_{1}^{2019}+x_{2}^{2020}=2021 \).

Hướng dẫn giải:

Ta nhận thấy:  \( a+b+c=0\Rightarrow \left[ \begin{align}  & x=1 \\  & x=m+1 \\ \end{align} \right. \).

a) Vì biểu thức \( {{x}_{1}},{{x}_{2}} \) đối xứng nên ta không chia trường hợp:

 \( \sqrt[3]{{{x}_{1}}}+\sqrt[3]{{{x}_{2}}}=10\Leftrightarrow \sqrt[3]{1}+\sqrt[3]{m+1}=10\Leftrightarrow \sqrt[3]{m+1}=9\Leftrightarrow m=728 \).

b) Ở đây biểu thức giữa \( {{x}_{1}},{{x}_{2}} \) không có tính đối xứng nên ta phải chia hai trường hợp:

Trường hợp 1:  \( \left[ \begin{align}  & {{x}_{1}}=1 \\  & {{x}_{2}}=m+1 \\ \end{align} \right.\Rightarrow x_{1}^{2019}+x_{2}^{2020}=2021 \)

 \( \Leftrightarrow {{1}^{2019}}+{{(m+1)}^{2020}}=2021\Leftrightarrow m=\sqrt[2020]{2020}-1 \).

Trường hợp 2:  \( \left[ \begin{align}  & {{x}_{1}}=m+1 \\  & {{x}_{2}}=1 \\ \end{align} \right.\Rightarrow x_{1}^{2019}+x_{2}^{2020}=2021 \)

 \( \Leftrightarrow {{(m+1)}^{2019}}+{{1}^{2020}}=2021\Leftrightarrow m=\sqrt[2019]{2020}-1 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài phát hành!

Không tìm thấy bài viết nào.

Cho hai tập hợp khác tập rỗng A=(m−1;4], B=(−2;−2m+6] (m∈R). Số giá trị nguyên của m để A⊂B là

Cho hai tập hợp khác tập rỗng \( A=(m-1;4],\text{ }B=(-2;-2m+6]\text{ }(m\in \mathbb{R}) \). Số giá trị nguyên của m để  \( A\subset B \) là:

A. 1.            

B. 3.              

C. 4.                

D. 2.

Hướng dẫn giải:

Chọn B

 \( A\subset B\Leftrightarrow \left\{ \begin{align}  & m-1\ge -2 \\  & 4\le -2m+6 \\ \end{align} \right.\Leftrightarrow -1\le m\le 1 \).

Vậy có 3 giá trị nguyên của m.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho các tập hợp A=[−3;1], B=(m−1;m+2]. Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−2020;2020] để

Cho các tập hợp \( A=[-3;1],\text{ }B=(m-1;m+2] \). Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn  \( [-2020;2020] \) để  \( A\cap B=\varnothing \) ?

A. 4040.           

B. 4030.            

C. 4032.                            

D. 4034.

Hướng dẫn giải:

Chọn D

Ta có:  \( A\cap B=\varnothing \Leftrightarrow \left[ \begin{align}  & m-1\ge 1 \\  & m+2<3 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & m\ge 2 \\  & m<-5 \\ \end{align} \right. \).

Mặt khác m nguyên thuộc đoạn  \( [-2020;2020] \) nên các giá trị của m là:

 \( \{-2020;-2019;..;-6;2;3;…;2020\} \).

Như vậy có tất cả 4034 giá trị nguyên của m.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp A=(−20;20) và B=[2m−4;2m+2) (m là tham số). Có tất cả bao nhiêu giá trị nguyên của tham số m để A∪B=A

Cho hai tập hợp \( A=(-20;20) \) và  \( B=[2m-4;2m+2) \) (m là tham số). Có tất cả bao nhiêu giá trị nguyên của tham số m để  \( A\cup B=A \)?

A. 16.              

B. 18.             

C. 15.                                

D. 17.

Hướng dẫn giải:

Chọn D

+ Ta có:  \( A\cup B=A\Leftrightarrow B\subset A\Leftrightarrow \left\{ \begin{align}  & -20<2m-4 \\  & 2m+2\le 20 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m>-8 \\  & m\le 9 \\ \end{align} \right.\Leftrightarrow -8<m\le 9 \).

+ Vì  \( m\in \mathbb{Z} \) nên  \( m\in \{-7;…;8;9\} \).

+ Vậy có tất cả 17 giá trị nguyên của tham số m để  \( A\cup B=A \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho số thực m<0. Tìm điều kiện cần và đủ để hai khoảng (−∞;2m) và (8m;+∞) có giao khác tập rỗng

Cho số thực \( m<0 \). Tìm điều kiện cần và đủ để hai khoảng  \( \left( -\infty ;2m \right) \) và  \( \left( \frac{8}{m};+\infty  \right) \) có giao khác tập rỗng.

A. \( m\le -2 \).     

B.  \( -2\le m<0 \).             

C.  \( -2<m<0 \).              

D.  \( -2<m<2 \).

Hướng dẫn giải:

Chọn C

+ Với  \( m\le -2 \) ta có:  \( 2m\le \frac{8}{m} \). Khi đó, sử dụng trục số ta có hai khoảng  \( \left( -\infty ;2m \right) \) và  \( \left( \frac{8}{m};+\infty  \right) \) luôn có giao bằng rỗng. Suy ra,  \( m\le -2 \) loại.

+ Với  \( -2<m<0 \) ta có:  \( 2m>\frac{8}{m} \). Khi đó, sử dụng trục số ta có hai khoảng  \( \left( -\infty ;2m \right) \) và  \( \left( \frac{8}{m};+\infty  \right) \) luôn có giao khác rỗng.

Vậy  \( -2<m<0 \) nhận.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp A={x∈R|1≤|x|≤2}; B=(−∞;m−2]∪[m;+∞). Tìm tất cả các giá trị của m để A⊂B

Câu 25. Cho hai tập hợp \( A=\left\{ x\in \mathbb{R}|1\le \left| x \right|\le 2 \right\} \);  \( B=(-\infty ;m-2]\cup [m;+\infty ) \). Tìm tất cả các giá trị của m để  \( A\subset B \).

A. \( \left[ \begin{align} & m\ge 4 \\  & m\le -2 \\ \end{align} \right. \).             

B.  \( -2<m<4 \).                         

C.  \( \left[ \begin{align} & m\ge 4 \\  & m\le -2 \\  & m=1 \\ \end{align} \right. \).         

D.  \( \left[ \begin{align}  & m>4 \\  & m<-2 \\  & m=1 \\ \end{align} \right. \).

Hướng dẫn giải:

Chọn C

Ta có:  \( A=[-2;-1]\cup [1;2] \),  \( B=(-\infty ;m-2]\cup [m;+\infty ) \).

Để  \( A\subset B \), ta có:

+ Trường hợp 1:  \( \left\{ \begin{align}  & m-2\ge -1 \\  & m\le 1 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m\ge 1 \\  & m\le 1 \\ \end{align} \right.\Leftrightarrow m=1 \).

+ Trường hợp 2:  \( m\le -2 \).

+ Trường hợp 3:  \( m-2\ge 2\Leftrightarrow m\ge 4 \).

Vậy  \( \left[ \begin{align}  & m\ge 4 \\  & m\le -2 \\  & m=1 \\ \end{align} \right. \) thì  \( A\subset B \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho tập hợp A=(0;+∞) và B={x∈R|mx2−4x+m−3=0}, m là tham số. Có bao nhiêu số nguyên m để B có đúng hai tập hợp con và B⊂A

Cho tập hợp \( A=(0;+\infty ) \) và  \( B=\left\{ x\in \mathbb{R}|m{{x}^{2}}-4x+m-3=0 \right\} \), m là tham số. Có bao nhiêu số nguyên m để B có đúng hai tập hợp con và  \( B\subset A \).

A. 2.           

B. 0.                    

C. Vô số.               

D. 1.

Hướng dẫn giải:

Chọn D

Yêu cầu đề bài tương đương với phương trình  \( m{{x}^{2}}-4x+m-3=0 \) có hai nghiệm phân biệt không âm.

Khi đó ta có điều kiện:  \( \left\{ \begin{align}  & m\ne 0 \\  & {\Delta }’=4-m(m-3)>0 \\  & \frac{4}{m}>0 \\  & \frac{m-3}{m}\ge 0 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & {{m}^{2}}-3m-4<0 \\  & m\ge 3 \\ \end{align} \right. \)

 \( \Leftrightarrow \left\{ \begin{align}  & -1<m<4 \\  & m\ge 3 \\ \end{align} \right.\Leftrightarrow 3\le m<4 \).

Do m nguyên nên chỉ có 1 giá trị của m.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp A=[0;5], B=(2a;3a+1],a>−1. Với giá trị nào của a thì

Cho hai tập hợp \( A=[0;5] \),  \( B=(2a;3a+1],a>-1 \). Với giá trị nào của a thì  \( A\cap B\ne \varnothing \) ?

A. \( -\frac{1}{3}\le a\le \frac{5}{2} \).    

B.  \( -\frac{1}{3}\le a<\frac{5}{2} \).           

C.  \( \left[ \begin{align}  & a<-\frac{1}{3} \\  & a\ge \frac{5}{2} \\ \end{align} \right. \).  

D.  \( \left[ \begin{align}  & a<-\frac{1}{3} \\  & a>\frac{5}{2} \\ \end{align} \right. \).

Hướng dẫn giải:

Chọn B

Ta có: \(A\cap B=\varnothing \Leftrightarrow \begin{cases} \left[\begin{array}{l} 2a\ge 5 \\ 3a+1<0 \end{array}\right. \\ a>-1 \end{cases} \)  \( \Leftrightarrow \begin{cases} \left[\begin{array}{l} a\ge \frac{5}{2} \\ a<-\frac{1}{3} \end{array}\right. \\ a>-1 \end{cases} \) \( \Leftrightarrow \left[ \begin{align}  & a\ge \frac{5}{2} \\  & -1<a<-\frac{1}{3} \\ \end{align} \right. \).

Do đó,  \( A\cap B\ne \varnothing \Leftrightarrow \left[ \begin{align}  & a\le -1 \\  & -\frac{1}{3}\le a<\frac{5}{2} \\ \end{align} \right. \). Kết hợp điều kiện  \( a>-1 \), ta có  \( A\cap B\ne \varnothing \Leftrightarrow -\frac{1}{3}\le a<\frac{5}{2} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp khác tập rỗng A=(m−1;4], B=(−2;2m+2). Với giá trị nào của m thì A⊂B

Cho hai tập hợp khác tập rỗng \( A=(m-1;4] \),  \( B=(-2;2m+2) \). Với giá trị nào của m thì  \( A\subset B \).

A. \( 1<m<5 \).      

B.  \( -2<m<5 \).              

C.  \( m>1 \).                     

D.  \( -1\le m<5 \).

Hướng dẫn giải:

Chọn A

Với  \( A=(m-1;4] \),  \( B=(-2;2m+2) \) khác tập rỗng, ta có điều kiện:

\(\left\{ \begin{align}  & m-1\ge -2 \\  & 2m+2>4 \\ \end{align} \right.\)\(\Leftrightarrow \left\{ \begin{align}  & m<5 \\  & m>-2 \\ \end{align} \right.\Leftrightarrow -2<m<5\) (*)

Với điều kiện (*), ta có:

 \( A\subset B\Leftrightarrow \left\{ \begin{align}  & m-1\ge -2 \\  & 2m+2>4 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m\ge -1 \\  & m>1 \\ \end{align} \right.\Leftrightarrow m>1 \).

So sánh (*) ta thấy các giá trị m thỏa mãn yêu cầu  \( A\subset B \) là  \( -2<m<5 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập khác rỗng A=(m−1;4], B=(−2;2m+2],∀m∈R. Xác định m để A⊂B

Cho hai tập khác rỗng \( A=(m-1;4] \),  \( B=(-2;2m+2],\forall m\in \mathbb{R} \). Xác định m để  \( A\subset B \).

A. \( m\in [1;+\infty ) \).     

B.  \( m\in [1;5] \).             

C.  \( m\in (1;+\infty ) \).    

D.  \( m\in [1;5) \).

Hướng dẫn giải:

Chọn D

Yêu cầu bài toán tương đương với:

 \( \left\{ \begin{align}  & m-1<4 \\  & -2<2m+2 \\  & -2\le m-1 \\  & 4\le 2m+2 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m<5 \\ & m>-2 \\  & m\ge -1 \\  & m\ge 1 \\ \end{align} \right.\Leftrightarrow 1\le m<5 \).

Vậy với  \( m\in [1;5) \) thì  \( A\subset B \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp A=[m−2;m+5] và B=[0;4]. Tìm tất cả các giá trị của tham số m để B⊂A

Cho hai tập hợp \( A=[m-2;m+5] \) và  \( B=[0;4] \). Tìm tất cả các giá trị của tham số m để  \( B\subset A \).

A. \( m\le -1 \).     

B.  \( -1\le m\le 2 \).           

C.  \( -1<m<2 \).              

D.  \( m\ge 2 \).

Hướng dẫn giải:

Chọn B

 \( B\subset A\Leftrightarrow \left\{ \begin{align}  & m-2\le 0 \\  & m+5\ge 4 \\  & m-2<m+5 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m\le 2 \\  & m\ge -1 \\  & -2<5 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m\le 2 \\  & m\ge -1 \\ \end{align} \right.\Leftrightarrow -1\le m\le 2 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho tập hợp A=[1−2m;5−2m], B={x∈R|x≥8−5m} (m là tham số). Tất cả giá trị của m để

Cho tập hợp \( A=[1-2m;5-2m] \),  \( B=\left\{ x\in \mathbb{R}|x\ge 8-5m \right\} \) (m là tham số). Tất cả giá trị của m để  \( A\cap B\ne \varnothing \)  là:

A. \( m\ge 1 \).         B.  \( m\le 1 \).         C.  \( m>1 \).       D.  \( m\ge \frac{7}{3} \).

Hướng dẫn giải:

Chọn A

Ta có:  \( B=\left[ 8-5m;+\infty  \right) \).

 \( A\cap B=\varnothing \Leftrightarrow 5-2m<8-5m\Leftrightarrow 3m<3\Leftrightarrow m<1 \).

Vậy  \( A\cap B\ne \varnothing \Leftrightarrow m\ge 1 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho tập hợp A=(m;m+2], B={x∈R|−3≤x−1<5}. Điều kiện của m để

Cho tập hợp \( A=(m;m+2] \),  \( B=\left\{ x\in \mathbb{R}|-3\le x-1<5 \right\} \). Điều kiện của m để  \( A\cap B=\varnothing \)  là:

A. \( m<6 \).       

B.  \( -4<m<6 \).              

C.  \( -4\le m<6 \).            

D.  \( m\ge -4 \).

Hướng dẫn giải:

Chọn C

+  \( B=\left\{ x\in \mathbb{R}|-3\le x-1<5 \right\}=[-2;6) \).

+ Để  \( A\cap B=\varnothing \Leftrightarrow \left[ \begin{align}  & 6\le m \\  & m+2<-2 \\ \end{align} \right.\) \( \Leftrightarrow \left[ \begin{align}  & m\ge 6 \\ & m<-4 \\ \end{align} \right. \).

 \( \Rightarrow A\cap B\ne \varnothing \Leftrightarrow -4\le m<6 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp A=[−3;−1]∪[2;4], B=(m−1;m+2). Tìm m để

Cho hai tập hợp \( A=[-3;-1]\cup [2;4] \),  \( B=(m-1;m+2) \). Tìm m để  \( A\cap B\ne \varnothing \) .

A. \( \left| m \right|>5 \).   

B.  \( \left| m \right|<5 \) và  \( m\ne 0 \).    

C.  \( m>0 \).    

D.  \( 1\le m\le 3 \).

Hướng dẫn giải:

Chọn B

+ Tìm m để  \( A\cap B=\varnothing  \).

+ Trường hợp 1:  \( m+2\le -3\Leftrightarrow m\le -5 \).

+ Trường hợp 2:  \( m-1\ge 4\Leftrightarrow m\ge 5 \).

+ Trường hợp 3:  \( \left\{ \begin{align}  & -1\le m-1 \\  & m+2\le 2 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m\ge 0 \\  & m\le 0 \\ \end{align} \right.\Leftrightarrow m=0 \).

Từ ba trường hợp ta có:  \( A\cap B=\varnothing \Leftrightarrow \left[ \begin{align}  & m\le -5 \\  & m\ge 5 \\  & m=0 \\ \end{align} \right. \).

Từ đó suy ra:  \( A\cap B\ne \varnothing \Leftrightarrow \left\{ \begin{align}  & -5<m<5 \\  & m\ne 0 \\ \end{align} \right.\Leftrightarrow \left| m \right|<5 \) và  \( m\ne 0 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho các tập hợp A=(3;3a−1) và B=[a+1;2a+3). Có bao nhiêu giá trị nguyên của a để

Cho các tập hợp \( A=(3;3a-1) \) và  \( B=[a+1;2a+3) \). Có bao nhiêu giá trị nguyên của a để  \( A\cap B\ne \varnothing \) .

A. 2.                   B. 1.              C. 3.                                   D. Vô số.

Hướng dẫn giải:

Chọn D

+ Tìm điều kiện để tồn tại các tập hợp A, B.

 \( \left\{ \begin{align} & 3a-1>3 \\  & a+1<2a+3 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & a>\frac{4}{3} \\  & a>-2 \\ \end{align} \right.\Leftrightarrow a>\frac{4}{3} \).

+ Tìm điều kiện để  \( A\cap B=\varnothing \) .

Ta có:  \( A\cap B=\varnothing \Leftrightarrow \left[ \begin{align} & 2a+3\le 3 \\  & 3a-1\le a+1 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & a\le 0 \\  & a\le 1 \\ \end{align} \right.\Leftrightarrow a\le 1 \).

Kết hợp điều kiện ta có:  \( A\cap B=\varnothing \Leftrightarrow \left\{ \begin{align}  & a>\frac{4}{3} \\  & a\le 1 \\ \end{align} \right. \). Suy ra không có giá trị nào của a thỏa mãn.

Vậy với mọi giá trị của a thì  \( A\cap B\ne \varnothing \) .

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp khác rỗng A=(m−1;4], B=(−2;2m+2],∀m∈R. Xác định m để \( A \subset B \)

Cho hai tập hợp khác rỗng \( A=(m-1;4] \),  \( B=(-2;2m+2],\forall m\in \mathbb{R} \). Xác định m để  \( A\subset B \).

A. \( m\in \left[ 1;+\infty \right) \).                           B.  \( m\in \left[ 1;5 \right) \).              C.  \( m\in \left( 1;+\infty  \right) \).             D.  \( m\in \left[ 1;5 \right] \).

Hướng dẫn giải:

Chọn B

Ta có:  \( A\subset B\Leftrightarrow \left\{ \begin{align}  & -2\le m-1<4 \\  & 4\le 2m+2 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & -1\le m<5 \\  & m\ge 1 \\ \end{align} \right.\Leftrightarrow 1\le m<5 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập khác rỗng A=(m−1;4] và B=(−2;2m+2), ∀m∈R. Số giá trị nguyên m để

Cho hai tập khác rỗng \( A=(m-1;4] \) và  \( B=(-2;2m+2),\forall m\in \mathbb{R} \). Số giá trị nguyên m để  \( A\cap B\ne \varnothing \)  là:

A. 8.           B. 9.                  C. 6.                  D. 7.

Hướng dẫn giải:

Chọn C

+ Ta có: A, B là hai tập khác rỗng nên  \( \left\{ \begin{align}  & m-1<4 \\  & 2m+2>-2 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m<5 \\  & m>-2 \\ \end{align} \right.\Leftrightarrow -2<m<5 \) (*)

+ Ta có:  \( A\cap B\ne \varnothing \Leftrightarrow m-1<2m+2\Leftrightarrow m>-3 \).

+ Đối chiếu với điều kiện (*), ta chọn  \( -2<m<5 \). Do  \( m\in \mathbb{Z}\Rightarrow m\in \{-1;0;1;2;3;4\} \).

Vậy có 6 giá trị nguyên của m thỏa mãn.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập khác rỗng A=(m−2;5] và B=(−2;2m+4), ∀m∈R. Số giá trị nguyên m để

Cho hai tập khác rỗng \( A=(m-2;5] \) và  \( B=(-2;2m+4) \),  \( \forall m\in \mathbb{R} \). Số giá trị nguyên m để  \( A\cap B\ne \varnothing  \) là:

A. 8.            B. 10.             C. 9.               D. 7.

Hướng dẫn giải:

Chọn C

+ Ta có:  \( A,B \) là hai tập khác rỗng nên  \( \left\{ \begin{align}  & m-2<5 \\  & 2m+4>-2 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m<7 \\  & m>-3 \\ \end{align} \right.\Leftrightarrow -3<m<7 \) (*)

+ Ta có  \( A\cap B\ne \varnothing \Leftrightarrow m-2\le 2m+4\Leftrightarrow m\ge -6 \).

+ Đối chiếu với điều kiện (*), ta chọn  \( -3<m<7 \). Do  \( m\in \mathbb{Z}\Rightarrow m\in \{-2;-1;0;1;2;3;4;5;6\} \).

Vậy có 9 giá trị nguyên của m thỏa mãn.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho 2 tập hợp A={x∈R|(2x−x2)(2×2−3x−2)=0}, B={x∈R|(2×2+x)(3x−12m)=0}, với giá trị nào của m thì A=B

Cho 2 tập hợp \( A=\left\{ x\in \mathbb{R}|(2x-{{x}^{2}})(2{{x}^{2}}-3x-2)=0 \right\} \),  \( B=\left\{ x\in \mathbb{R}|(2{{x}^{2}}+x)(3x-12m)=0 \right\} \), với giá trị nào của m thì  \( A=B \)?

A. \( \frac{1}{2} \).                 B.  \( -2 \).           C. 2.            D.  \( -\frac{1}{2} \).

Hướng dẫn giải:

Chọn A

Xét tập hợp  \( A=\left\{ x\in \mathbb{R}|(2x-{{x}^{2}})(2{{x}^{2}}-3x-2)=0 \right\} \), ta có:  \( (2x-{{x}^{2}})(2{{x}^{2}}-3x-2)=0 \)

 \( \Leftrightarrow \left[ \begin{align} & 2x-{{x}^{2}}=0 \\  & 2{{x}^{2}}-3x-2=0 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=0 \\  & x=-\frac{1}{2} \\ & x=2 \\ \end{align} \right.\Rightarrow A\left\{ 0;2;-\frac{1}{2} \right\} \).

Xét tập hợp  \( B=\left\{ x\in \mathbb{R}|(2{{x}^{2}}+x)(3x-12m)=0 \right\}=\left\{ 0;-\frac{1}{2};4m \right\} \).

Để  \( A=B\Leftrightarrow 2=4m\Leftrightarrow m=\frac{1}{2} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp M=[2m−1;2m+5] và N=[m+1;m+7] (với m là tham số thực). Tổng tất cả các giá trị của m để hợp của hai tập hợp M và N là một đoạn có độ dài bằng 10 là

Cho hai tập hợp \( M=[2m-1;2m+5] \) và  \( N=[m+1;m+7] \) (với m là tham số thực). Tổng tất cả các giá trị của m để hợp của hai tập hợp M và N là một đoạn có độ dài bằng 10 là:

A. 4.                     B. -2.                  C. 6.                     D. 10.

Hướng dẫn giải:

Chọn A

Nhận thấy M, N là hai đoạn cùng có độ dài bằng 6, nên để  \( M\cup N \) là một đoạn có độ dài bằng 10 thì ta có các trường hợp sau:

+  \( 2m-1\le m+1\le 2m+5\Leftrightarrow m\in [-4;2] \)  (1)

Khi đó:  \( M\cup N=[2m-1;m+7] \), nên  \( M\cup N \) là một đoạn có độ dài bằng 10 khi:

 \( (m+7)-(2m-1)=10\Leftrightarrow m=-2 \)  (thỏa mãn (1)).

+  \( 2m-1\le m+7\le 2m+5\Leftrightarrow m\in [2;8] \)  (2)

Khi đó:  \( M\cup N=[m+1;2m+5] \), nên  \( M\cup N \) là một đoạn có độ dài bằng 10 khi:

 \( (2m+5)-(m+1)=10\Leftrightarrow m=6 \) (thỏa mãn (2)).

Vậy tổng tất cả các giá trị của m để hợp của hai tập hợp M và N là một đoạn có độ dài bằng 10 là  \( -2+6=4 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp A=(m−1;5], B=(3;2020−5m) và A, B khác rỗng. Có bao nhiêu giá trị nguyên của m để

Cho hai tập hợp \( A=\left( m-1;5 \right] \),  \( B=\left( 3;2020-5m \right) \) và A, B khác rỗng. Có bao nhiêu giá trị nguyên của m để  \( A\backslash B=\varnothing \) ?

A. 3.           B. 399.                 C. 398.                D. 2.

Hướng dẫn giải:

Chọn D

Vì A, B là hai tập hợp khác rỗng, nên ta có điều kiện:

\( \left\{ \begin{align}  & m-1<5 \\  & 3<2020-5m \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m<6 \\  & m<\frac{2017}{5} \\ \end{align} \right.\Leftrightarrow m<6 \).

Để  \( A\backslash B=\varnothing \)  thì  \( A\subset B \) ta có điều kiện:  \( \left\{ \begin{align}  & 3\le m-1 \\  & 5<2020-5m \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align} & m\ge 4 \\  & m<403 \\ \end{align} \right.\Leftrightarrow 4\le m<403 \).

Kết hợp điều kiện,  \( 4\le m<6 \).

Vậy có 2 giá trị nguyên của m thỏa mãn.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp P=[3m−6;4), Q=(−2;m+1), m∈R. Tìm m để

Cho hai tập hợp \(P=\left[ 3m-6;4 \right)\), \(Q=(-2;m+1)\), \( m\in \mathbb{R} \). Tìm m để  \( P\backslash Q=\varnothing \) .

A. \( 3\le m<\frac{10}{3} \).     B.  \( 3<m<\frac{10}{3} \).     C.  \( m\ge 3 \).    D.  \( \frac{4}{3}<m\le 3 \).

Hướng dẫn giải:

Chọn A

Vì P, Q là hai tập hợp khác rỗng, nên ta có điều kiện:

 \( \left\{ \begin{align}  & 3m-6<4 \\  & m+1>-2 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m<\frac{10}{3} \\  & m>-3 \\ \end{align} \right.\Leftrightarrow -3<m<\frac{10}{3} \).

Để  \( P\backslash Q=\varnothing \Leftrightarrow P\subset Q\Leftrightarrow \left\{ \begin{align}  & 3m-6>-2 \\  & m+1\ge 4 \\ \end{align} \right. \)

 \( \Leftrightarrow \left\{ \begin{align}  & m>\frac{4}{3} \\  & m\ge 3 \\ \end{align} \right.\Leftrightarrow m\ge 3 \).

Kết hợp điều kiện ta có:  \( 3\le m<\frac{10}{3} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Cho hai tập hợp bằng nhau là A={x∈Z||x−2|=∣∣x2−3x+1∣∣} và B={b;c}. Giá trị của biểu thức M=b3+c3 bằng

Cho hai tập hợp bằng nhau là \( A=\left\{ x\in \mathbb{Z}|\left| x-2 \right|=\left| {{x}^{2}}-3x+1 \right| \right\} \) và  \( B=\{b;c\} \). Giá trị của biểu thức  \( M={{b}^{3}}+{{c}^{3}} \) bằng

A. 62.          B. 26.                  C. 82.             D. 28.

Hướng dẫn giải:

Chọn D

Ta có:  \( \left| x-2 \right|=\left| {{x}^{2}}-3x+1 \right|\Leftrightarrow \left[ \begin{align} & {{x}^{2}}-3x+1=x-2 \\  & {{x}^{2}}-3x+1=2-x \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & {{x}^{2}}-4x+3=0 \\  & {{x}^{2}}-2x-1=0 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=1\text{ }(n) \\  & x=3\text{ }(n) \\  & x=1\pm \sqrt{2}\text{ }(\ell ) \\ \end{align} \right.\xrightarrow{x\in \mathbb{Z}}A=\{1;3\} \).

Mà  \( B=A\Rightarrow B=\{1;3\}\Rightarrow M={{b}^{3}}+{{c}^{3}}=28 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...