Biết số phức z thỏa mãn |iz−3|=|z−2−i| và |z| có giá trị nhỏ nhất. Phần thực của số phức z bằng

Biết số phức z thỏa mãn \( \left| iz-3 \right|=\left| z-2-i \right| \) và  \( \left| z \right| \) có giá trị nhỏ nhất. Phần thực của số phức z bằng:

A. \( \frac{2}{5} \)

B.  \( \frac{1}{5} \)                    

C.  \( -\frac{2}{5} \)         

D.  \( -\frac{1}{5} \).

Hướng dẫn giải:

Đáp án D.

Đặt  \( z=x+yi\text{ }(x,y\in \mathbb{R}) \).

Khi đó:  \( \left| iz-3 \right|=\left| z-2-i \right|\Leftrightarrow \sqrt{{{x}^{2}}+{{(-y-3)}^{2}}}=\sqrt{{{(x-2)}^{2}}+{{(y-1)}^{2}}} \)

 \( \Leftrightarrow x+2y+1=0\Leftrightarrow x=-2y-1 \)    (1)

Lại có:  \( \left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}} \)                       (2)

Thay (1) vào (2), ta được:

 \( \left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}=\sqrt{{{(-2y-1)}^{2}}+{{y}^{2}}}=\sqrt{5{{y}^{2}}+4y+1}=\sqrt{5{{\left( y+\frac{2}{5} \right)}^{2}}+\frac{1}{5}}\ge \frac{\sqrt{5}}{5} \)

Dấu “=” xảy ra khi  \( y+\frac{2}{5}=0\Leftrightarrow y=-\frac{2}{5} \)

Thay  \( y=-\frac{2}{5} \) vào (1) suy ra:  \( x=-\frac{1}{5} \).

Vậy phần thực của số phức z là  \( -\frac{1}{5} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *