Biết rằng F(x) là một nguyên hàm trên \( \mathbb{R} \) của hàm số \( f(x)=\frac{2017x}{{{({{x}^{2}}+1)}^{2018}}} \) thỏa mãn F(1) = 0. Tìm giá trị nhỏ nhất m của F(x).
A. \( m=-\frac{1}{2} \)
B. \( m=\frac{1-{{2}^{2017}}}{{{2}^{2018}}} \)
C. \( m=\frac{1+{{2}^{2017}}}{{{2}^{2018}}} \)
D. \( m=\frac{1}{2} \)
Hướng dẫn giải:
Đáp án B.
Ta có: \( \int{f(x)dx}=\int{\frac{2017x}{{{({{x}^{2}}+1)}^{2018}}}dx}=\frac{2017}{2}\int{{{\left( {{x}^{2}}+1 \right)}^{-2018}}d\left( {{x}^{2}}+1 \right)} \)
\( =\frac{2017}{2}.\frac{{{\left( {{x}^{2}}+1 \right)}^{-2017}}}{-2017}+C=-\frac{1}{2{{\left( {{x}^{2}}+1 \right)}^{2017}}}+C=F(x) \)
Mà \( F(1)=0\Rightarrow -\frac{1}{{{2.2}^{2017}}}+C=0\Rightarrow C=\frac{1}{{{2}^{2018}}} \)
Do đó: \( F(x)=-\frac{1}{2{{\left( {{x}^{2}}+1 \right)}^{2017}}}+\frac{1}{{{2}^{2018}}} \)
F(x) đạt giá trị nhỏ nhất khi và chỉ khi \( \frac{1}{2{{\left( {{x}^{2}}+1 \right)}^{2017}}} \) lớn nhất \( \Leftrightarrow {{\left( {{x}^{2}}+1 \right)}_{\min }}\Leftrightarrow x=0 \).
Vậy \( m=-\frac{1}{2}+\frac{1}{{{2}^{2018}}}=\frac{1-{{2}^{2017}}}{{{2}^{2018}}} \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!