Bất phương trình f(x) e^(x^2)+m đúng với mọi x∈(−1;1) khi và chỉ khi

Cho hàm số y={f}'(x) liên tục trên  \( \mathbb{R} \) và có bảng xét dấu đạo hàm như sau:

Bất phương trình  \( f(x)<{{e}^{{{x}^{2}}}}+m  \) đúng với mọi  \( x\in \left( -1;1 \right) \) khi và chỉ khi

A. \( m\ge f(0)-1 \)

B.  \( m>f(-1)-e  \)            

C.  \( m>f(0)-1 \)             

D.  \( m\ge f(-1)-e  \)

Hướng dẫn giải:

Đáp án C.

\(f(x)<{{e}^{{{x}^{2}}}}+m\Leftrightarrow f(x)-{{e}^{{{x}^{2}}}}<m\)

Xét hàm số:  \( g(x)=f(x)-{{e}^{{{x}^{2}}}} \);  \( {g}'(x)={f}'(x)-2x{{e}^{{{x}^{2}}}} \).

Trên khoảng  \( \left( -1;0 \right) \), ta có: \( \left\{ \begin{align}  & {f}'(x)>0 \\ & -2x>0 \\ \end{align} \right.\Rightarrow {g}'(x)>0,\forall x\in \left( -1;0 \right) \)

Trên khoảng (0;1), ta có: \( \left\{ \begin{align} & {f}'(x)<0 \\  & -2x<0 \\ \end{align} \right.\Rightarrow {g}'(x)<0,\forall x\in \left( 0;1 \right) \)

Tại điểm x = 0, ta có: \( \left\{ \begin{align} & {f}'(x)=0 \\ & -2x{{e}^{{{x}^{2}}}}=0 \\ \end{align} \right.\Rightarrow {g}'(x)=0 \)

Suy ra bảng biến thiên của g’(x):

S

Từ bảng biến thiên, ta có: \( \displaystyle \max_{(-1;1)}g(x)=f(0)-1 \)

Do đó, bất phương trình m > g(x) đúng với mọi  \( x\in \left( -1;1 \right) \) khi và chỉ khi  \( m> \displaystyle \max_{(-1;1)}g(x)=f(0)-1 \).

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *